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AFIT/GA/ENY/04-M05   
 

Abstract 

 
  The feasibility of satellite operations in close proximity to a reference 

satellite is of interest for both civilian and military applications.  One such operation is 

circular circumnavigation in a time period less than the orbital period of the reference 

satellite.  This thesis investigates a guidance scheme for such maneuvers involving 

impulsive burns at specific points within a specified toroidal region centered on the 

circular-orbiting reference satellite.  Two analytical methods for determining the 

magnitude and direction of the impulses are demonstrated. These methods are then used 

as initial estimates in an optimization scheme to produce the minimum total required 

impulse. 
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MANEUVER DESIGN FOR FAST SATELLITE CIRCUMNAVIGATION 

 
 
 

I. Introduction 
 
 
 Operations between two spacecraft in orbit have become of increasing interest to 

both the civilian and military communities.  Satellite-to-satellite operations have been 

demonstrated since the beginning of human space endeavors.  The most common relative 

satellite-to-satellite (relative motion) operations have been rendezvous between two 

cooperating spacecraft, but other proximity operations are becoming more important.  In 

recent times, there has been considerable interest in orbiting satellites in close relative 

formations. 

Considerable work has been done in the area of satellite formation flying:  the 

design of formations (11; 13), their reconfiguration and maintenance (5), and formation 

evolution through orbital perturbations (3; 12; 14; 15).  Portions of this work have 

focused on natural motion formations, establishing a relative position and velocity with 

respect to a reference orbit, and allowing the natural dynamics to produce elliptical 

motion in the relative frame.  Reconfiguration of formations, another topic of study, has 

focused on optimizing propellant expenditure from one formation to another without 

necessarily focusing on the shape or time variation of the flight path.  (5; 13) 

Other proximity operations maneuvers are becoming more important in planning 

for such missions as on-orbit repair and refueling as well as potential damage inspection 

or identification of Resident Space Objects (RSO).  (7; 10)  Circumnavigating a chief 
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satellite with a deputy satellite provides the ability to inspect the chief from a variety of 

viewpoints.  Often these viewpoints are required to be at a constant distance from the 

chief  and therefore requiring circular circumnavigations.  A circumnavigation is defined 

as the deputy’s flight about a desired circular path (nominal path) with a specified 

orientation about a chief spacecraft.   

Previous Work 

 
The minimum propellant required for a circular circumnavigation is the natural 

motion circular formation (11:7-8), which requires the initial conditions to be set up in a 

very specific manner.  These natural motion circumnavigations all have a 

circumnavigation period (rotating around the chief satellite through 360º) equal to the 

period of the chief.  This period is on the order of 90 minutes for Low Earth Orbiting 

satellites with an altitude around 400 km, and increases as the altitude increases.   

Circumnavigation times less than the chief’s orbital period, are termed ‘fast’.  

These fast circumnavigation maneuvers have utility in the operation of a proposed 

‘inspector’ micro-satellite (4:1). In order to determine time changing phenomena on the 

chief spacecraft, these maneuvers need to be accomplished less than the orbital period of 

the chief satellite (4:1). As the required time for a circumnavigation decreases, the total 

impulse required increases to perform the circumnavigation.  Minimizing the total 

impulse for a given maneuver allows for greater operational flexibility, increased sorties 

for a given amount of propellant, and potentially increase the lifetime for any given 

satellite performing these maneuvers. 
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The theoretical impulse requirements for differing circumnavigation times and 

orientations of a nominal circular path have been demonstrated (4: 1-2).  Their method 

assumed continuous control to produce perfect circular motion with respect to the chief.  

After simplifications, the unperturbed Hill’s equations are derived as (4:2; 14:377) 

 

z

y

x

fznz

fxny
fxnynx

=+

=+
=−−

2

2

2
32

&&

&&&
&&&
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where x, y, and z represent the position as a function of time relative to the chie f, and “fx, 

fy, and fz are the propulsive forces per unit mass” (4:2).  From these equations the total 

impulse, required to follow a path defined using Equation 1 is represented as (4:2): 

 ∫ ++=∆
T

zyx dtfffV
0

222  (2) 

where T is the time required to follow the total path.  This theoretical impulse is 

informative in understanding the total forces required to follow a specific path, but often 

the path is only constrained to lie within a certain volume.  Exact adherence to a defined 

circumnavigation path is not always necessary; operationally, it is conjectured only a 

very small percentage of the total flight path is required to be at a certain position and 

time relative to the chief.  The rest of the flight path is then constrained to be distance 

away from nominal path, or in some instances a minimum distance to the chief 

spacecraft/object. 
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Problem Statement 

 
 For the problem investigated here, the deputy will perform the circumnavigation 

through a set of discrete impulses in a specified time of flight (TOF).  The deputy’s flight 

path must perform a full 2π  angular rotation about the chief without doubling back on 

itself.  The placement and number of each burn point must be determined as well as the 

required direction and magnitude of each individual impulse.   

The deputy is also constrained to stay within a specified distance from the desired 

or ‘nominal’ path during the circumnavigation maneuver.  This constraint allows for 

operational considerations such as collision avoidance and operational requirements for 

the deputy’s payload.  The payload is postulated to potentially be a remote sensing 

detector (visual, infrared, etc…) where the distance to the chief can become an important 

operational factor. 

There are two probable cases of general rules on constraining the placement of the 

burn points.  First, a case is defined by requiring all the burn points placed on the nominal 

path.  This is called the ‘Special Case’.  Next, a case is defined by allowing the burn 

points to be placed anywhere within the constraint volume, called the ‘General Case’.  

The special case may be required if the spacecraft is required to be a constant distance 

from the chief.  For instance, there may be a plume exclusion zone or distance 

requirement.   

The general case has the most operational utility, because remote measurements 

of the chief will be required after the relatively dynamic behavior of the spacecraft settles 
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after each subsequent burn point.  Because the burn points do not have to be on the 

nominal path, it allows more flexibility in choosing where burns are placed. 

Overview of Content 

 
 A method involving discrete impulsive burns is desired.  These maneuvers require 

significant propellant expenditure to achieve the required circumnavigation trajectories 

within the desired TOF.  The placement, relative to the chief satellite, and the timing of 

these discrete impulses (at the burn points) has a significant impact on the propellant 

required for a given maneuver. 

 Hill’s equations are used as the primary tool for modeling the dynamics for the 

required maneuvers.  The equations are used to calculate the total impulse, ∆vt, required 

for a given circumnavigation maneuver.  From these equations, the position, magnitude, 

and direction of each discrete impulse, ∆v, is determined.  The magnitudes are summed 

to determine the total impulse required.  The required impulse is directly proportional to 

the amount of thrust a propulsion system must provide, and thus the mass of propellant 

required for a given mission. 

A simple method for placement of the burn points is initially developed, and used 

as an initial guess for numerical optimization.  The optimization routine is used to 

investigate the lowest minimum propellant required.  From analyzing the optimization 

results, an analytical algorithm is proposed to approximate the minimum total required 

impulse for a circumnavigation maneuver, and to develop a more robust initial guess for 

the numerical optimization.  This algorithm’s performance is then evaluated for several 

cases. 
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II Methodology 
  

Assumptions  

 
The chief or RSO is assumed to be in a circular orbit, with the deputy orbit having 

a very small eccentricity.  Additionally, a two body, point-mass gravitational model is 

assumed (i.e. no perturbations), and the distance between the deputy and the chief is 

much less than the radius of the chief’s orbit.  These assumptions allow the use of Hill’s 

equations for relative orbital motion. 

Hill’s Equations. 
 

A specific form of Hill’s equations (16:83) is used (also known as the complete 

Clohessy-Wiltshire solution) and shown as:  

 0
0

0

( )( )
( )

( )( )

r tr t
t t

v tv t

δδ
δδ
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rr
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 (4) 

where n is the mean motion of the chief’s orbit and ∆t=t-t0.  Equation 3 determines the 

position, δr, and velocity, δv, relative to the chief at a time, ∆t, later than the initial 

position and velocity.  
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Assumptions in Initial Conditions.  
 
 The deputy’s initial position and velocity relative to the chief are assumed to be 

known.  However, in order to generalize the results, zero initial relative velocity is used 

for all calculations.  Zero initial velocity ensures no component direction of the initial 

velocity can subtract or add to the impulse at the initial point.  This essentially cancels the 

effects of any variations in the initial conditions on the overall optimization.   

Additionally, the deputy is required to not exceed a given distance from the 

nominal path during any part of the maneuver.  The distance from the deputy to the 

nominal path is defined as a maximum deviation, ρmax.  This deviation, ρmax, is measured 

as the magnitude of the spatial deviation vector of the flight path from the nominal path.  

This spatial deviation vector is thought of as a radius from the nominal path, thus ρmax is 

termed the maximum deviation radius.  The actual deviation (of the flight path from the 

nominal path) is only measured in a spatial sense.  It does not take into account when and 

where the deputy is located on the flight path with reference to when and where the 

deputy is to be nominally located along the nominal path.  The ρmax constraint defines a 

toroidal constraint surface about the nominal path. 

Instantaneous ∆v Assumption. 
 

Instantaneous impulses, ∆v, which occur at discrete points in space, are assumed.  

This assumption is less valid for low thrust vehicles or for extremely fast 

circumnavigation times of flight when impulses may require a significant amount of time 

to impart a change in velocity.  For instance, this assumption breaks down as the 
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individual maneuver durations become a significant fraction of the circumnavigation time 

of flight, TOF. 

Nominal Path  

 
The orientation and size of the circular nominal path can be described by four 

parameters: r0, ?, T y, and T z. (4:3)  A 2-3 space fixed T y, T z rotation sequence of a circle 

of radius, r0, in the y-z plane defines the nominal circular path.  The angle ? defines a 

spatial degree of freedom along the circular path with the initial point being defined by γ0.  

Figure 1 illustrates this rotation.  The values of T y, T z, and ro are assumed to be given 

quantities, whereas ? is a variable which must be varied to determine points on the circle.  

These four parameters are defined in the Local Vertical, Local Horizontal (LVLH) 

coordinate system.  The LVLH coordinates define the y direction in the same direction of 

the chief’s instantaneous velocity vector.  The x direction is defined in the radial (from 

the center of the Earth) direction to the chief, and consequently the z direction is 

orthogonal to x and y.  This coordinate system is equivalent to the RSW coordinates used 

in many texts (14:162-163). 

 
   

Figure 1  a) Rotated Nominal Path b) Unrotated Nominal Path 
 

T y 

x 

y 

z 

T z 

γi 

or

z 

y 
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 Mathematically, any point along the nominal path is represented by a phasing 

angle, γi, and by rotating an initial vector of length r0 placed along the y direction ([0; r0; 

0]).  This corresponds to the initial point located with γ0 = 0.  Using the rotation described 

above, the position vector as a function of γ is (4:3) 

 
















⋅Θ⋅
Θ⋅Θ⋅⋅+⋅Θ⋅
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)sin()cos(
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iziyz

i
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γγ

γγ
γδ

r  (5) 

where γ0 = 0. 

State Vector Definition 

  Unique spatial positions where discrete, instantaneous impulses occur are 

called ‘burn points’.  These burn points are required to perform the circumnavigation 

within the required total time.  Assigning individual time of flights between them allows 

for the computation of the ∆v required at each burn point.   Hill’s equations (16:80) were 

used to determine the total impulse, ∆vt, required for a particular maneuver.  This 

parameterization assumes the time, ti, at each ith point is known; the times, ti, are 

independent variables.   

 A complete circumnavigation is defined by a 2π  rotation in γ from some given 

initial position (defined by a γo on the nominal path) within the required total time of 

flight (TOF).  The parameter, b, indicates the total number of discrete burn points along 

the circumnavigation path. 

 A state vector, X, is composed of the spatial degrees of freedom for the burn 

points’ positions, and the corresponding times when the deputy is located at the burn 

point positions.  There are two probable cases investigated for constraining the placement 

of the burn points.  First, the ‘special case’ requires all the burn points to be placed on the 
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nominal path.  Therefore, the special case only requires one degree of freedom, γi, to 

define a burn point placement.  Next, the ‘general case’ is defined by allowing the burn 

points to be placed anywhere within the constraint volume.   For both cases, the burn 

point timing is not specified, only the sum of the times as defined by the 

circumnavigation. 

Special Case State Vector.  
 

The special case state vector is built from the discrete values of γi and ti, defined by 

 

 1,...,1,
1

1

−=



























= bifor
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where b is the total number of burn points.  In order to assure the circumnavigation is 

complete (i.e. the deputy returns to the initial point), the angle to the final position, γb, is 

computed as 2π  minus the sum of the previous γi’s.  Similarly, the time of the final point, 

tb, is computed as TOF minus the sum of all the previous t’s.  These values are computed 

as 
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General Case State Vector.   
 

A general case, representing three degrees of spatial freedom, defines the burn 

points placed within a solid torus whose minor radius is defined by ρmax.  Any point along 

the actual flight path (and within the solid torus) has a vector from it to the nominal path 

which represents a deviation radius, and has a magnitude of ρ.  This radius is rotated 

about the nominal path by an angle, e as shown in Figure 2.  The angle e can be rotated 

through 2p defining a circle about any point on the nominal path.  Rotating this circle by 

?, creates a torus with an inner radius, rc = r0-ρ, and an outer radius, rt = r0 + ρ.  The inner 

and outer radii will be used in Chapter V below.   

 
 

Figure 2.  Sketch of Torus Parameterization 
 

Figure 2 gives an illustration of the torus parameters to define a unique point 

within the torus.  A coordinate frame is fixed in the torus where the p2 direction is defined 

by the position of the initial position, which can be defined by the initial angle, γ0, with 

respect to the LVLH frame.  The p3 direction lies within the nominal path plane 

p2 

 

 

p3 
ro 

γ 
ε 
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orthogonal to p2, and p1 completes the triad.  The radius, ρ, is allowed to vary from 0 to 

ρmax.   

Any point in the solid torus can be given by  
 
 1 2 3 1 0 2 0 3ˆ ˆ ˆ ˆ ˆ ˆsin( ) ( cos( )cos( )) ( cos( )sin( ))p p px p y p z p p r p r pρ ε ρ ε γ ρ ε γ+ + = + + + +     (8) 

where xp, yp, and zp are components in the path coordinate system [p1 p2 p3].  Equation (8) 

is modified from a general torus parameterization. (8)  The position vector is expressed in 

LVLH coordinates using the nominal path rotation angles Θy and Θz discussed above.  

Thus the position vector, δr, is defined in the LVLH frame as    
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where γ0 is set to zero.  

Now the general case state vector is defined using the three degrees of freedom: 
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where the final point in-plane angle,? γb, and time, tb, are computed as in Eq. (7), but the 

final point radius, ρ??, and torus angle, ??ε,? are allowed to vary.  
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 Total Impulse Computation (Cost Function).   

 
To compute each discrete individual ∆v requires knowledge of the individual time 

of flight between the ith and the (i+1)th burn point, calculated as 

 

 1211 −+ −=∆−=∆ iiii tttttt  (11) 
 

 Once the position of the current burn point, δr(ti), along with the time of flight, 

∆t1, to the next burn point, δr(ti+1), is known; the required velocity, δv+( ti), immediately 

following the burn is computed as 

 [ ])()()()( 11
1

+
−+ −⋅∆Φ⋅Φ= iirrrvi trtrttv

rrr
δδδ  (12) 

 

 The velocity just prior to the burn, δv-( ti), is calculated by 
 

 )()()()()( 1212 −
+

−
− ⋅∆Φ+⋅∆Φ= ivvivri tvttrttv

rrr
δδδ  (13) 

 
where Φvr and Φvv are defined above in Eq. (4).(16:80)  This velocity is determined by 

the location and magnitude of the previous ∆v.  Eq. (13) is valid for all burn points except 

for the initial one.  At the initial burn point, δv-( ti) is assumed to be zero for all 

calculations. 

 Once the velocity just prior to the burn point and the velocity just after the 

impulsive burn is known, the ∆v magnitude and direction is computed as 

 )()( iii tvtvv −+ −=∆
rrr

δδ  (14) 

Now that the individual ∆v vectors are computed, the total required impulse can be 

minimized.  The total impulse is given by 
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Singularity in Cost Function. 
 
 The cost function (Eq. (15)) is not continuous within the feasible region of most 

cases.  This is a result of using the inverse of the Φrv matrix in Eq. (12); which is 

computed as 
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 (16) 

 
where ψ = n t.  This matrix contains a singularity when ψ is zero or an integer multiple of 

π .  The cost function’s gradient becomes very steep in the region near the singularity, and 

the numerical optimization routine will not converge to a solution if the search routine 

approaches the singularity.  Physically, this singularity is represented by burning between 

two points of a finite distance apart in zero time which requires infinite ∆v.   

Several strategies are employed to mitigate the singularity’s effects on the 

numerical optimization.  These strategies include initial guess inputs into the optimization 

close to a local minimum, utilizing a low number of burn points in the initial guess, 

searching over different potential numbers of burn points, and establishing bounds on the 

time instances to be ε < ti.  In practice, this lower limit of the times, ε, has been set to 

(1x10-7) x TOF to prevent the routine from approaching too close to the singularity.  
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These mitigations allow good performance of the optimization routine in the vicinity of a 

local minimum. 

Flight Path Constraint 

As mentioned previously, the actual circumnavigation flight path between burn 

points must be contained within the torus and, therefore, must not deviate from the 

nominal path by more than ρmax. For this reason, the deviation from the nominal path 

must be calculated to ensure the relative satellite trajectory meets this constraint. The 

flight path between burn points is calculated in discrete time steps by propagating Hill’s 

equations (16:80) forward after the burn is applied:  

 

 )()()()()( intintint irvirr tvttrttr +⋅∆Φ+⋅∆Φ=
rrr

δδδ  (17) 
 

where ∆tint are intermediate time steps defined by dividing ∆t1 by z time steps. A value of 

z = 20 was chosen for all calculations.  This value of z provided adequate resolution of 

the path’s shape and magnitude.  The intermediate position vector, δr(tint), is used to 

determine the flight path deviation represented as vector, ρdev, illustrated in Figure 3.   
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Figure 3.  Path Constraint Definition Sketch 
 

 The ‘path’ frame [p1 p2 p3] is defined by the space-fixed 1-2-3 rotation by γo, Θy, 

and Θz from the LVLH frame.  Assuming the initial position always lies on the nominal 

path, the corresponding transformation matrix, R, from the path frame to the LVLH 

coordinates is 
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This matrix, R, is then used in the subsequent Eqs. (19), (20), and (21). Each intermediate 

point is transformed into the path frame by 
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The intermediate position vector, δ r(tint), is projected into the plane of the 

nominal path to calculate the position vector of the nominal path’s closest point.  Since 
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there is no preferred timing of the intermediate points along the circumnavigation, the 

closes point is found as 

 2
2
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rpath
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δ
δ

δ
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r

 (20) 

 
The flight path deviation vector, ρdev, is calculated by differencing the intermediate 

position vector and the projected path vector in the path frame:   

 pathdev rtrR
rrr

δδρ −⋅= ))(( int  (21) 
 
Finally, the flight path constraint is defined by deviation radius magnitude, ρdev, which 

cannot exceed ρmax.  The constraint is computed by ensuring the difference is never 

positive: 

 0max ≤− ρρdev

r
 (22) 

Additional Constraints 

 Each burn point’s γ and t cannot exceed 2p and TOF respectively from the 

problem statement above.   Additionally, the values for γ and t must be zero or greater 

(positive).  These values are used to define the upper, Xu, and lower, Xl, limits on the 

state vector.  

 A linear inequality constraint is needed to ensure γb and tb are not negative.  From 

Eq. (7), it can be seen the sum of the γ’s and the sum of the t’s cannot be greater than 2π  

or TOF respectively.  Physically, this would represent the circumnavigation doubling 

back on itself producing  a negative γb, and time flowing backwards giving a negative tb. 
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Numerical Optimization 

 A numerical optimization technique is employed to locate locally minimum fuel 

trajectories.  The general form of the optimization problem can be represented as 
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 (23) 

 
where Gcineq(X) represents the nonlinear constraints from Eq. (22) and linear inequality 

constraints from above.  The states,  Xl and Xu, represent the lower and upper bound 

constraints on the state vector.  The goal is to find the state vector producing the 

minimum value of the cost function, F(X) computed in Eq. (15). 

The cost function, F(X), is highly non- linear.  The ‘fmincon’ function in 

MATLAB’s Optimization Toolbox (6) was chosen to perform the optimization.  This 

routine is designed using Sequential Quadratic Programming (9:3-26) which allows for 

the use of nonlinear constraints, is appropriate for a single objective cost function, and 

allows for linear constraints as well.  It is limited by the fact the cost function must be 

continuous over the interval, and will also attempt to minimize the maximum constraint if 

there is no feasible solution (9:3-26). 

MATLAB Optimization Routine. 
 
 As mentioned above, MATLAB’s ‘fmincon’ function uses the Sequential 

Quadratic Programming method which is composed of three main steps:  updating the 

Hessian matrix of the Lagrangian equation, solving the Quadratic Programming sub-

problem, and performing a Line-search and Merit function calculation. (9:Sec.3, 26).  
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The optimization problem can be reformulated into the Kuhn-Tucker Equations (9: Sec.3, 

26): 
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where λi
* is a Lagrange multiplier termed a Kuhn-Tucker point at a unique state vector, 

X*, and m is the number of constraints.  This equation essentially balances the gradients 

of the active constraints and the gradient of the cost function to find a minimum.  If the 

minimum lies on the constraint boundary, it may not be a true minimum, but the least 

cost function value along the boundary.  The Kuhn-Tucker points can be found by 

solving the Lagrangian equation (9: Sec.3, 27): 

 ∑
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⋅+=
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i
cineqi XGXFXL

1

))(()(),( λλ  (25) 

 The algorithm starts with an initial guess state vector.  From the initial guess, a 

Hessian is computed using finite difference calculations.  The Quadratic Sub-Problem is 

then solved (9: Sec.3, 28 and 2:238) to determine the search direction.  Once the search 

direction has been defined a line search and merit function are used to determine the step 

size in order to update the state vector.  The updated state vector is: 

 kkk dXX α+=+1  (26) 

where dk gives the search direction and α is the distance along the search direction.  Once 

the step size is determined the gradient of the function is evaluated at the new point, and 

evaluated against Eq. (24).  If the convergence criteria are not met, the BFGS (Broyden-
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Fletcher-Goldfarb-Shanno) method (1:330 and 9: Sec.3, 30) is then used to determine an 

updated Hessian matrix, and the procedure is reiterated.   

Practical MATLAB Usage. 
 
 MATLAB uses finite differencing techniques to numerically compute the gradient 

and Hessian of the cost function at any given state vector.  These finite differences 

require bounds on the step size for the finite difference.  The default was set at 1x10-8, but 

1x10-9 produced higher quality results.  Additionally, the tolerance on the state vector, the 

cost function and the constraints can be set as well.  Changing these tolerances produced 

significant differences in the output of the optimization program.  Setting all tolerances 

equal to 1x10-9 produced the most consistent results for all the cases presented.  

 Functionally, the state vector quantities were normalized for input into 

MATLAB’s ‘fmincon’ routine.  This gives a similar magnitude between the states and 

produced better convergence.  The angles ε and γ were normalized by 2π to give values 

between zero and one , the deviation, ρ was normalized by the maximum deviation radius, 

ρmax, and time was normalized by TOF.  (Angles of the special case shown below were 

not normalized.) 

Optimization Results Check. 
 
 In order to check the optimization program, the cost function is evaluated in select 

directions around the area of the minimum given by the program.  The goal of the check 

is to gain confidence in the optimization results and understand what levels in the 

numerical tolerances produced the best results.  This method is based upon a subset of the 

Weierstrass Theorem. (1:83)   
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Specifically, the cost function is evaluated at the optimized state vector stepped in 

only one state by a range of finite steps and does not utilize  the full set of possible states 

as required by the Weierstrass Theorem.  Each step creates a new state vector, X': 

 )(' mgXX j+=  (27) 

where m is the step size, and g is given as 
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where j represents the state to be stepped.  This step vector is the same length as the 

original state vector, X.  

If the optimized state vector is to produce a local minimum within the defined 

tolerances, the new stepped value of the cost function, F(X'), cannot be less than the cost 

function value from the optimization output: 

 0)()'( >− XFXF    (29) 

 This step method described doesn’t fully ensure a local minimum has been found 

because the cost function could decrease in a direction not orthogonal to the states.  For 

instance, simultaneously stepping states 1 and 2 by some amount  produces another 

unique state vector and thus another unique cost function value.  This check describes a 

necessary condition for a minimum, but doesn’t describe a sufficient condition. 
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 If given a stepped value of the cost function for which Eq. (29) is not satisfied, the 

state X does not represent a minimum in the cost function.  However, the new state vector 

must be evaluated to determine if it meets the constraints as well.  If the new state does 

not meet the constraints, it is not a valid state, and therefore must be disregarded.  

Functionally the new stepped state is compared to the constraints.  If the new path 

violates constraints an integer number is added to a variable called the check sum.  This 

check sum is zero if no constraints were violated, and greater than zero if the constraints 

were violated.  The other constraint’s violations (upper and lower limits of the state 

vector and the linear inequality constraint on the sum of the times and γ’s) were included 

in this check sum as well. 

An alternate way to verify a minimum is to use the Kuhn-Tucker necessary 

conditions (1:122).  The Kuhn-Tucker method requires the calculation of the gradient of 

the cost function at the specific points.   However, this method was not needed since the 

step method described above was able to provide enough confidence in the minima found 

by the optimization routine. 
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III.  Equal Angle/Equal Time Method 

 
 The behavior of the cost function is initially evaluated with a very simple analytic 

method in defining the placement and timing of the individual ∆vi’s.  This method 

provides a baseline for comparing the optimization’s or other analytic methods’ 

performance.  The Equal Angle/Equal Time (EAET) method is defined by the burn points 

placed upon the nominal path in equal angular displacements along the nominal path and 

spaced equal times apart.  Each angular location and time is given by  

 
b

TOF
t

b ii == ,
2π

γ  (30) 

where b, the number of burn points, must be specified.   

 Figure 4 shows the behavior of the EAET with the TOF set to 0.1 times the orbital 

period of the chief (about 9.25 minutes).  The chief is in a circular orbit with an altitude 

of 400 km for all calculations and results shown throughout this thesis, unless otherwise 

stated.   The nominal path is oriented in the x-y plane (Θy = 90° and Θz = 0°) with the 

initial point rotated 45° along the path (γ0 = 45°).  The nominal path’s radius is set at 50 

m, with the deviation constraint, ρmax, equal to 10 m.  Two paths are shown in Figure 4.  

The ‘Min Actual Path’ is using five burn points (b = 5), and the ‘Infeasible Path’ is using 

four burn points (b = 4). The constraint surface is shown as the circular grid, representing 

the torus’s surface. 
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Figure 4.  EAET with Minimum Feasible Number of Burn Points (b = 5).  Θy = 90º,Θz = 

0º ,γo = 45º, TOF = 0.1, and ρmax = 10 m 
 

Minimum Number of Burn Points for Given ρmax. 

 
For the EAET method there exists a minimum b for the required ρmax constraint to 

be satisfied.  The deviation from the nominal path is apparent, and depends upon the b 

used in Equation 30.  The number of burn points, b, is stepped in integer increments from 

2 until the minimum number of burn points case meets the flight path constraint.  In 

Figure 4, the b = 4 case exceeds the maximum deviation.   
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∆vt Versus Number of Burn Points. 

The difference in magnitude of ∆vt (also called the change in velocity in some 

Figures) between the continuous and the discrete methods of circumnavigation can be 

quantified by Figure 5.  Figure 5 shows the variation of ∆vt as a function of the number of 

burn points for several path orientations.  The circumnavigation for each case shown has 

its nominal path rotation Θz  = 0º, a radius of 50 meters and a TOF = 0.1 times the chief’s 

period (555 s).  

 
Figure 5.  ∆vt Versus the Number of Burn Points. 

 
The flight path’s deviation from the nominal path increases as the number of burn 

points decreases, which can be seen qualitatively from Figure 4.  As the number of burn 
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points increases the value of ∆vt approaches a value that it would be for a continuous 

burn on the nominal path.   

The flight path’s deviation from the nominal path is also a function of the number of 

burn points.  Therefore, the value of ρmax determines the minimum number of burn points 

that produce a trajectory within the torus.  The minimum number of burn points is 

determined by trial-and-error as above and represents the minimum ∆vt for the EAET 

method. 

The EAET method is a very simple algorithm allowing for a quick determination of 

the order of the required ∆vt, but further investigations show room to further minimize 

∆vt.  However, due to its simplicity, the EAET method presents a good basis for 

measuring the performance of the optimization results.  The ∆vt for each subsequent 

optimization result and analytical design method is compared to the EAET by computing 

the percentage of savings from the EAET method for the given circumnavigation. 

Comparison with Continuous Control Method. 

The EAET method allows a direct comparison to continuous control techniques. (4)  

The paradigm used differs from continuous control technique by the allowance of the 

intermediate flight path between burn points to vary off of the defined nominal path.   

The continuous control paradigm ensures all points on the circumnavigation follow the 

nominal path vice the discrete methods proposed require the path to lie within a 

constrained region about the nominal circular path. The variance or deviation from the 

nominal path allows for considerable savings in the ∆vt.   
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 Varying the nominal path’s orientation and TOF also affects ∆vt required.  The 

∆vt varies similarly with TOF, Θy, and Θz as found in the continuous method (4:3) except 

the magnitude of the ∆vt is less.  For instance, Figures 6 and 7 demonstrate the variation 

of ∆vt with rotating a 50 m nominal path about Θy while varying TOF from 0.1 to 1.  The 

graphs show the ∆vt  variation as computed by the EAET method with six burn points 

(b=6).   

 The shapes of the curves are the same as demonstrated in the continuous control 

method (4:6) with a few exceptions.  The overall magnitude of the surface is less than the 

magnitude presented in the continuous case, except at the minimum points.  Also, 

because the initial velocity is set to zero relative to the chief, a finite amount of ∆v is 

required to put the circumnavigation on a natural motion trajectory which occurs at Θy = 

30º and 120º with a TOF = 1 and Θz = 0º. (11:7)  For these cases, the continuous case ∆vt 

would be zero as can be seen from Eq. (2) and as presented in Reference 4. (4:6)  

However, the minimums and maximums still occur at the same respective values of Θy, 

Θz, and TOF. 
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Figure 6.  ∆vt Surface From Varying TOF and Θy 

 

 
Figure 7.  ∆vt Cross-Sections From Varying TOF and Θy 

 
 This comparison is extrapolated into the results for the optimization cases, and 

subsequent analytical methods.  For cases with TOF less than 0.5 times the chief’s orbital 

period, the minimum ∆vt  occurs at Θy = 90º and Θz = 0º.  This case will be the primary 

example for the lower total impulse trajectories calculated below.  
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IV.  Optimization Results 
 

The EAET method has two drawbacks:  the ∆vt is not optimal and the 

intermediate flight path constraints cannot be enforced except by trial-and-error selection 

of the number of burn points.  To investigate the behavior of optimal maneuvers that 

satisfy the path constraint, we use numerical optimization.  The optimization results are 

presented using the two defined cases: the special case and the general case. 

Special Case Results 

  The EAET method is used as the initial guess in the optimization of the cost 

function shown in Eq. (15).  Several other types of guesses were investigated, but they 

mainly involved random choices of the states, and did not provide lower cost function 

values than the EAET method.  Figure 8 shows the results from using the EAET initial 

guess with b = 5, ρmax = 10 m and a TOF = 0.1.  The nominal path is oriented in the x-y 

plane to allow for simpler viewing of the actual flight paths; additionally, the x-y plane 

represents the minimum required circumnavigation for this TOF as shown in Figure 7.  

The initial guess’s (EAET’s) value for the ∆vt is 2.6082 m/s for the path defined in Figure 

8.  The final optimized ∆vt value is 2.4485 m/s and represents a 4.55% savings in ∆vt.   



 30 

 
Figure 8.  Five Burn Points, Θy = 90º, Θz = 0º, γo = 45º with TOF = 0.1 and ρmax = 0.01 km 

 
One fundamental difference between the guess and the optimized solution is the 

deviation of the intermediate flight path from the nominal.  Figure 9 shows the magnitude 

the deviation from the nominal path, ρdev, for the both the initial guess and the optimized 

solution.  The zero points for both lines in Figure 9 represent the burn points, which are 

placed upon the nominal path.  Note the EAET flight path does not directly touch the 

constraint surface. 
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Figure 9.  Five Burn Points Deviation, Θy = 90º, Θz = 0º, γo = 45º with TOF = 0.1, and 

ρmax = 0.01 km 
 
 The optimized intermediate flight path touches the constraint boundary after the 

initial burn and the final burn as seen in Figure 9; this excursion to the constraint 

boundary skirts the inner radius of the torus as seen in Figure 8.  The optimization 

consistently found minima where the intermediate flight path skirts the constraint 

boundary.  This skirting is characteristic of all the reasonable optimal solutions computed. 

 The next step is to investigate the effect of varying the flight path constraint,  ρmax.   

Figure 10 shows the optimization for a path with the same orientation and TOF as Figure 

8, but with ρmax = 20 m.  The minimum number of burn points for the EAET case is now 

four.  The optimized ∆vt was determined as 2.05 m/s which represents a 12.5% savings 

over the EAET value of 2.34 m/s.   



 32 

 

Figure 10.  Four Burn Points, Decrease Constraint: Θy = 90º, Θz = 0º, γo = 45º, TOF = 0.1 
and ρmax = 0.02 km 

 
 The optimization routine placed the first and last burn points such that the first 

and last paths were tangential to the inner constraint surface.  This was a common theme 

while decreasing the constraint (increasing ρmax).  Ultimately, increasing ρmax   decreases 

the total number of points possible, and if the maximum deviation is large enough the 

circumnavigation requires only  two burns which represents the minimum number of 

burn points for a reasonable circumnavigation. 
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Optimization Results Check Output. 
 
 The optimization results check as described above is used to determine whether or 

not the optimization routine found a local minimum.  A variety of steps sizes were 

utilized ranging from 1 x 10-10 to 1 x 10-1 step sizes in increments of one order of 

magnitude.  Each stepped state vector is evaluated to ensure the circumnavigation 

constraints are met.    

 To show whether the constraints were met or exceeded for each new stepped state 

vector, a Violation Matrix is developed.  The Matrix is calculated for each new stepped 

state vector, X', and is a row vector with six columns.  If the value in the column is zero 

then the particular constraint corresponding to the column was met, likewise if the value 

is greater than zero that constraint has been violated the integer value number of times.  

The constraint definitions are given in Table 1. 

Table 1.  Violation Matrix Definition 
 

Violation Matrix 
Column Number Constraint 

1 πγ 2
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<∑
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i
i  
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3 γi < 2π  
4 ti < 1 
5 γi and ti > 0 

6 0max ≤− ρρdev

r
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 Table 2 shows part of the step check data from the circumnavigation and 

optimization presented in Figure 8 above.  The full data are presented in Appendix A.  

The top half of Table 2 for a step size of 1x10-7 produces changes in the cost function 

much lower than the cost function tolerance; in this case the tolerance on the cost 

function was set at 1x10-9.  The lower half (bolded numbers) represent the step size which 

shows the optimization meets the local minimum requirements.  If the Step Check 

column is negative, then the step size and direction represent a more minimum value for 

the stepped cost function.  However, since the optimization result was constrained the 

bolded negative values all exceed constraints and therefore are not feasible states.  The 

feasible states are all positive.   This is true for the step size of 1x10-6, but decreasing the 

step size to 1x10-7 represents a case where the step size produces a difference in the new 

cost function two orders below the numerical limit of the optimization criteria. 
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Table 2.  Special Case Step Optimization Check Example 
 

State 
Number, 

j 

Step Size, m Violation 
Matrix 

Step Check, 
F(X')-F(X) 

(km/s) 

Check 
Sum 

1 1.00E-07 0 0 0 0 0 0 1 7.47E-12 1 
2 1.00E-07 0 0 0 0 0 0 0 2.93E-11 0 
3 1.00E-07 0 0 0 0 0 0 0 3.02E-11 0 
4 1.00E-07 0 0 0 0 0 0 0 3.07E-11 0 
5 1.00E-07 0 0 0 0 0 0 0 -7.93E -12 0 
6 1.00E-07 0 0 0 0 0 0 0 -1.93E -11 0 
7 1.00E-07 0 0 0 0 0 0 0 -1.98E -11 0 
8 1.00E-07 0 0 0 0 0 0 0 -1.79E -11 0 
1 -1.00E -07 0 0 0 0 0 0 0 -7.47E -12 0 
2 -1.00E -07 0 0 0 0 0 0 0 -2.93E -11 0 
3 -1.00E -07 0 0 0 0 0 0 0 -3.02E -11 0 
4 -1.00E -07 0 0 0 0 0 0 0 -3.07E -11 0 
5 -1.00E -07 0 0 0 0 0 0 0 7.93E-12 0 
6 -1.00E -07 0 0 0 0 0 0 0 1.93E-11 0 
7 -1.00E -07 0 0 0 0 0 0 0 1.98E-11 0 
8 -1.00E -07 0 0 0 0 0 0 0 1.79E-11 0 
1 1.00E-06 0 0 0 0 0 0 1 7.47E-11 1 
2 1.00E-06 0 0 0 0 0 0 0 2.93E-10 0 
3 1.00E-06 0 0 0 0 0 0 0 3.02E-10 0 
4 1.00E-06 0 0 0 0 0 0 0 3.07E-10 0 
5 1.00E-06 0 0 0 0 0 0 1 -7.93E-11 1 
6 1.00E-06 0 0 0 0 0 0 1 -1.93E-10 1 
7 1.00E-06 0 0 0 0 0 0 1 -1.98E-10 1 
8 1.00E-06 0 0 0 0 0 0 1 -1.79E-10 1 
1 -1.00E -06 0 0 0 0 0 0 1 -7.47E-11 1 
2 -1.00E -06 0 0 0 0 0 0 1 -2.93E-10 1 
3 -1.00E -06 0 0 0 0 0 0 1 -3.02E-10 1 
4 -1.00E -06 0 0 0 0 0 0 1 -3.07E-10 1 
5 -1.00E -06 0 0 0 0 0 0 1 7.94E-11 1 
6 -1.00E -06 0 0 0 0 0 0 0 1.93E-10 0 
7 -1.00E -06 0 0 0 0 0 0 0 1.98E-10 0 
8 -1.00E -06 0 0 0 0 0 0 0 1.79E-10 0 

Unreasonable but Feasible Solutions. 
 
 Some of the optimization runs produced unreasonable circumnavigations, but still 

met the mathematical constraints.  For instance, placing an initial guess with only two 

burn points spaced by π  radians for the same circumnavigation requirements used in 

Figure 8, yields an optimized path that doesn’t circumnavigate the chief, but still lies in 
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the feasible space of the cost function.  The initial guess is itself infeasible, but the 

resulting feasible optimized path is shown in Figure 11.  The optimized ∆vt is 0.84460 

m/s. Although the optimized path does not actually circumnavigate the chief, it does meet 

the constraints as stated above.  This type of minimum was only found when the initial 

guess is infeasible. 

 
Figure 11.  Two Burn Points. Θy=90, Θz=0, γo=45 with TOF = 0.1 and ρmax=0.01 km 

 
 As the initial conditions are modified by placing the initial point ahead or behind 

the chief along the y-axis, (γo = 0 or π), a minimum can be found by moving 

infinitesimally ‘forward’ along the path, and infinitesimally ‘back’ to the initial position.  

The ∆vt for these ‘circumnavigations’ approach zero, which represents the global 

minimum for those conditions.  Of course, these cases do not represent valid 

circumnavigations.  This can be avoided by ensuring an adequate number of burn points 
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are used in the initial guess, that they are sufficiently spaced apart, and the initial guess is 

feasible.   

Special Case Results Evaluation. 
 

Several other nominal paths, TOF requirements, and constraint boundaries were 

investigated using the special case shown in Table 3.  The EAET method was used as the 

initial guess for all of the outputs.   

Table 3.  Special Case Representative Results 
 

Total Impulse (∆vt) 

EAET ∆ vt Special Case Optimization Results 
∆vt 

(m/s) 

Initial Conditions 
r0 = 50 m, 

a = 6778 km Min. Burn 
Pts. (b) 

∆vt 
(m/s) 

% of EAET 

2.55 Θy=60°, Θ z=30°, γo=45°, 
TOF = 0.1, ρ max=10 m 5 2.67 

4.3% 

2.96 Θy=0°, Θz=0°, γo=0°, 
 TOF = 0.1, ρ max=10 m 5 3.02 

2.2% 

2.49 
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Θy=90°, Θ z=0°, γo=45°, 
TOF = 0.1, ρ max=10 m 5 2.61 

4.5% 

2.11 Θy=60°, Θ z=30°, γo=45°, 
TOF = 0.1, ρ max=20 m 4 2.39 

11.8% 

2.70 

V
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ρ

m
ax

 Θy=60°, Θ z=30°, γo=45°, 
TOF = 0.1, ρ max=8 m 6 2.85 

5.1% 

1.13 Θy=60°, Θ z=30°, γo=45°, 
TOF = 0.2, ρ max=10 m 5 1.18 

4.4% 

5.49 

V
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f 
T

O
F

 Θy=60°, Θ z=30°, γo=45°, 
TOF = 0.05, ρmax=10 m 5 5.67 

3.2% 

 

The optimization results for varying the orientation of the nominal path shows the 

limit for how well the optimization performs over the EAET case.  The best the 

optimization performed was when the nominal path is in the x-y plane, as expected for a 
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constant deviation constraint.  Conversely the smallest difference between the EAET and 

the optimization occurred when the nominal path was not rotated at all, which 

corresponds to the y-z plane circumnavigation.  These results are consistent with Figures 

6 and 7 as well as the continuous case results (4:3-8).  The variation show in the y-z plane 

nominal path gives credibility to extrapolating the effects of nominal path orientation 

variation as well as TOF variation. 

Comparing the total impulse value for differing ρmax constraints, while keeping 

the circumnavigation path and TOF constant, shows that as ρmax decreases, the ∆vt 

increases.  This result is consistent with the results implied from the EAET analytical 

method; the minimum number of burn points has to increase to meet the flight path 

constraint and as the minimum number of burn points increases the ∆vt increases as well.  

Another expected result is the ∆vt scales directly with the TOF; shorter TOF’s result in 

greater ∆vt.  

General Case Results 

 The General Case allows the burn points to vary off of the nominal path with 

three spatial degrees of freedom, but all other constraints apply.  Figure 12 shows the 

results with Θy = 90º, Θz = 0º, γo = 45º, TOF = 0.1, and ρmax=0.01 km, and the minimum 

EAET, b=5, as the initial guess (equivalent to Figure 8).  The optimization routine found 

a local minimum with the intermediate burn points placed on the nominal path.  The 

optimized ∆vt doubles the savings from the optimized special case at 2.3754 m/s 

representing 8.92% savings.  The flight path touches the inner constraint radius at four 

points with the optimization routine minimizing the path length between the third and 
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fourth burn points.  While all the burn points still lie on the nominal path, the endpoint is 

now located on the outside constraint boundary. 

 
Figure 12.  General Case Optimization Results for Θy=90, Θz=0, γo=45, TOF = 0.1 

and ρmax=0.01 km 

 
Figure 13.  General Case Optimization Results Deviation for Θy=90, Θz=0, γo=45, 

 TOF = 0.1 and ρmax=0.01 km 
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 Figure 12 shows an interesting result; all burn points still lie on the nominal path 

when they are free to vary off of it.  This indicates the cost function has a local minimum 

when the burn points are placed on the nominal path and corresponds to the special case 

above. 

Varying Initial Guess Radii. 

 The numerical results are sensitive to different initial guesses.  The next approach 

is to run the optimization placing the initial guess burn points away from the nominal 

path.  The guesses are defined by using the EAET placement in γ and t along a varying 

radius away from the nominal path radius, but within the constraint boundary.  Figure 14 

shows the placement of the initial guess burn points on the extreme outer constraint 

boundary, at a radius of 60 meters.  The end point of the initial guess is set on the outside 

edge of the constraint boundary.  The optimization routine finds a local minimum very 

close to the EAET guess placed on the nominal radius with the burn points placed within 

1-3 meters off the nominal radius.    
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Figure 14.  General Case Optimization with Guess on Outer Constraint Boundary.  

Θy=90º, Θz=0º, γo=45º with TOF = 0.1 and ρmax=0.01 km 
 

 
Figure 15.  Deviation of Guess on Outer Constraint Boundary.  Θy=90º, Θz=0º, γo=45º 

with TOF = 0.1 and ρmax=0.01 km 
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Figure 15 shows the deviation of the initial guess on the outside constraint boundary and 

the optimization.  Again the optimization finds the state vector such that the intermediate 

flight paths skirt the inner constraint boundary, while trying to eliminate a burn point by 

minimizing the path between the third and fourth burn points. The ∆vt for this 

optimization is 2.3775 m/s or 8.85 % savings on EAET which is approximately the same 

as the results for the initial guess on the nominal path. 

Placing the initial guess burn points on the interior radius of the constraint surface 

leads to non-convergence in the optimization.  The TOF of 0.1 causes every flight path 

point except for the burn points to be in the cost function’s infeasible region.  No fast 

TOF was found to converge on a solution if all burn points were placed on the inner 

constraint radius. 

The next step is to progressively step the initial guess radius (constant radius upon 

which the EAET points are located) inward (toward the inner constraint radius) from r0. 

Figure 14 shows the results when the 5 point EAET guess is placed upon a radius of 48.5 

m (1.5 m less than the nominal of 50 m).  The initial guess ∆vt is found to be 2.5324 m/s 

and the optimized ∆vt is 2.378 m/s.  The optimized solution represents 8.9408% savings 

on the EAET method at the nominal radius.  The key feature of the new optimized 

solution is the fact that all intermediate paths now skirt the inner constraint radius. 

The ∆vt is approximately the same as the previous two cases, indicating a region 

in which the objective function is ‘flat’; resulting in a numerically sensitive search that 

yields many different local minima.  These local minima are only stationary points due to 

numerical imprecision.  
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Figure 16.  Guess Radius of 48.5 m.  Θy = 90º, Θz = 0º, γo = 45º with TOF = 0.1  

and ρmax = 0.01 km 
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Figure 17.  Guess Radius of 48.5 m, Deviation.  Θy = 90º, Θz = 0º, γo = 45º  

with TOF = 0.1 and ρmax = 0.01 km 
 
 

Placing the 5 burn point initial guess on a radius tighter than the average radius of 

3 m shown in Figure 17 produces an infeasible guess that will not converge to a solution 

for these parameters; therefore the number of burn points must be increased in order to 

find feasible initial guesses that will converge to a solution.   
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Figure 18 represents the guess with an inner radius one third of the distance from 

the nominal radius to the inner constraint boundary while increasing b to six.  The 

optimization finds a minimum touching the inner constraint boundary between every 

burn point.  The resulting optimized intermediate burn points are placed at a nearly 

constant ρdev of 6 meters as seen in the deviation of the optimization in Figure 19. 

 

 
Figure 18.  Initial Guess 1/3 Less Nominal Radius and b = 6.  Θy=90º, Θz=0º, γo=45º with 

TOF = 0.1 and ρmax=0.01 km 
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Figure 19  Deviation with Initial Guess 1/3 Less Nominal Radius and b = 6.  Θy=90º, 

Θz=0º, γo=45º with TOF = 0.1 and ρmax=0.01 km 
 

The one third radius guess’s ∆vt is 2.5923 m/s; whereas the optimized ∆vt is 2.3360 m/s.  

This represents a 0.61% savings and 10.44% savings respectively compared to the 

minimum EAET at the nominal radius.  The increase in savings from the optimized 

solution shown in Figure 16, is counter to the EAET conclusion of the lower the number 

of burn points the lower the ∆vt. 

 The initial guess radius is tightened to 6.5 meters while keeping the number of 

burn points constant at six.  Figures 20 and 21 illustrate the results from this initial guess.  

Note the initial guess is in the cost function’s infeasible region, but the optimization 

routine is able to converge on a minimum.  The savings from the initial guess (compared 

to EAET) is 7.23% at a value of 2.4197 m/s, whereas the savings from the optimization is 

10.42% at a value of 2.3365 m/s.  This shows there is a unique radius for a given number 

of burn points where all the intermediate flight paths are tangential to the inner constraint 

radius.  This fact will be used to develop an analytical method for determining the 

placement of the burn points. 
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Figure 20.  Initial Guess Radius = 6.5 m and b = 6.  Θy=90º, Θz=0º, γo=45º with TOF = 

0.1 and ρmax=0.01 km 
 

 
Figure 21. Deviation of Initial Guess Radius = 6.5 m and b = 6.  Θy=90º, Θz=0º, γo=45º 

with TOF = 0.1 and ρmax=0.01 km 
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Out of Nominal Plane Component. 

Most of the burn points do not have a significant out-of-nominal-plane placement 

for most rotations.  The maximum out of nominal plane placement of the burn points 

occurs when the nominal path is not rotated, but left in the y-z plane.  Figure 22 shows an 

edge on view of a circumnavigation with r0 = 50 m, Θy = 0º, Θz = 0º, γo = 45º, and a TOF 

= 0.1.  The maximum deviation radius is set at 10 m, but the maximum deviation out of 

plane is 2 m.  The initial guess is the EAET with a radius one third less than the nominal 

(the same as presented in Figure 22).  The small deviation is used as a simplifying 

assumption in the development of an analytical method below. 

 

Figure 22.  y-z Plane Circumnavigation  

General Case Results Evaluation. 

 The main trend from the general case optimization is the intermediate flight paths 

all skirt the inner constraint radius.  These circumnavigations represent the least ∆vt 
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found for a given number of burn points, and the shortest path lengths between the burn 

points. 

There are two additional trends.  First, given a set of rotation angles, constraint 

boundary, and an initial guess with a tighter radius the number of burn points must 

increase to find a feasible solution.  However, this increase in the number of burn points 

does not increase ∆vt as indicated from the EAET method.  Second, there appears to be 

radius which allows a balance between the dynamics of the system and shortening the 

path length for a given number of burn points.  Additionally, the resulting out-of-

nominal-plane component for optimized burn points is small. 

 The initial guesses have so far produced hints as to where the minima are located, 

but a new method for developing an initial guess is desired.  A better guess will allow for 

a more comprehensive search for the best circumnavigation maneuver. 
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V. Analytical Design Method 
 

 Based on the general case optimization results, an improved analytical design 

method is developed yielding a lower ∆vt than the EAET method.  For fast TOF (less 

than 0.3 of the chief’s orbital period), it is hypothesized that a minimal total length path 

that skirts the inner constraint radius is optimal for a given number of burn points.  The 

path can be approximated as straight lines tangential to the inner constraint radius.  

Furthermore, there exists a unique radius from the chief upon which the burn points are 

placed.  This radius (termed the design radius, rd) is no more than the nominal radius and 

no less than the nominal radius minus the maximum deviation radius (the inner constraint 

radius).  Trends in the general case results justify this hypothesis.   

 The general case results justify this hypothesis based upon three factors.  First, the 

general case optimization results indicate minima with all the intermedia te flight points 

touching the inner constraint radius.  Next, the burn points lie within a nearly constant 

radius greater than the inner constraint radius, but less than the nominal radius.  Finally, 

the optimized burn points lie within a plane very near the plane of the nominal path.   
 

Analytical Design Assumptions and Simplifications  

 In creation of the design algorithm, several factors are assumed and 

simplifications made from the general case optimization results.  The flight paths are 

assumed to be straight lines.  Additionally, the algorithm places the ‘designed’ plane to 

coincide with the nominal path’s plane.  The times of flight between burn points are 

assumed to be the same ratio with TOF as the burn point’s γ angle from the last burn 

point to 2π .  The end point for the circumnavigation is constrained to lie on the outside 

constraint boundary on a line between initial point and the chief.  Finally, the γ angles 
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between the 2nd burn point and the next to last burn point are assumed to be equally 

divided.  

Algorithm Description and Analysis 

 All burn points but the initial burn point lie on a circle with the design radius, rd.  

The inner constraint radius, rc, is computed by subtracting ρmax from r0.  A search range 

for the values of the design radius, rd, is a set of the radii from the inner constraint radius 

to the nominal radius.  A set of burn points is determined for each potential design radius 

within this range.  Figure 23 shows the corresponding position and relevant angles for all 

the burn points for a unique design radius.   

 

 
Figure 23  Sketch of Design Algorithm Geometry 

 

 The second burn point, b2, is determined by finding the tangent line from the 

initial point, b1, to the inner constraint radius in the circumnavigation’s direction, and 

placing b2 at the farthest intersection of the tangent line and the circle inscribed by rd.  In 

order to compute the γ angle between the two burn points, the angle α must be found by 
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The initial path length, p1, between the burn points is computed using the Pythagorean 

Theorem: 
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Using this path length and the angle, α, γ1 is computed using the Law of Sines: 
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The next step is to compute the last burn point (in Figure 23 it is b6).  The angle αt is 

computed exactly as Eq. (31), but r0 is replaced with the radius to the end point, rt.  Eq. 

(32) is used again to determine the final path length, pb, however r0 is replaced by rt in 

Eqs. (31) and (32).  Next, Eq. (33) is used to determine the last angle, γb, replacing the 

appropriate variables.   

 Once the second and last burn points have been determined, the intermediate burn 

points are calculated.  A tangent line to the inner constraint radius is circled from the 

second burn point and each subsequent burn points.  The next burn point is placed at the 

intersection of the tangent line and the design radius.  The γ value for each burn point is 

determined by simple geometry.  This procedure is accomplished until the sum of 

previous γ values exceeds 2π  - γb-1.  The next to the last angle, γb−1, (in Figure 23: γ5) is 

calculated as 
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 The next step is to iterate the cost function through each value of the design radii.  

This iteration can be visua lized in Figure 24.  Figure illustrates four design radii, special 

attention should be drawn to the two middle circles (specifically to the drawn area of 

interest) and the next-to-the- last path length.  For the greater of the two circles, the next-

to-the- last path is tangent to the inner constraint radius.  However, decreasing the design 

radius to the next circle produces a next-to-the- last path that is not tangent to the inner 

constraint radius.  There exist specific design radii which produce a flight path tangent to 

the inner radius between each burn point including the next to the last flight path. 
 

 

Figure 24  Sketch of Straight Line Flight Paths with Multiple Design Radii 
 

 Now that the burn points are placed, the total circumnavigation velocity change, 

∆vt, is calculated for a range of design radii.  The design radius producing the minimum 

∆vt is then chosen.  Figure 25 shows the ∆vt as a function of rd used to determine the final 

design radius. 
 

Design radii 
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End Point 

rc 

Area of Interest 
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Figure 25.  ∆vt vs rd.  Θy = 90º, Θz = 0º, γo = 45º with TOF = 0.1 and ρmax = 0.01 km 

 The minimum for this case occurs at a rd of 0.04124 km.  The vertical dashed 

lines represent transitions from one discrete number of burn points to another in the 

analytical design.  The jumps in ∆vt in Figure 25 are directly correlated to these 

transitions.  The reason for this behavior is seen in Figure 24 where the pb-1 path is only 

tangent at unique values of the design radius as discussed above. 

 An example of the MATLAB code for this algorithm is located in Appendix B. 

Variation of Number of Burn Points with Design Radius. 

  The number of burn points grows exponentially as the design radius approaches 

the inner constraint radius, which can be seen in Figure 26.   
 



 54 

 
Figure 26.  Number of Burn Points vs. rd. Θy = 90º, Θz = 0º, γo = 45º with TOF = 0.1 and 

ρmax = 0.01 km 
 
The minimum ∆vt does not correlate to the minimum number of burn points.  This 

result seemingly contradicts the conclusion above that the lower the number of burn 

points the lower ∆vt.  The number of burn points is increased in order to shorten the flight 

path to skirt the inner constraint radius.  Eventually, though, increasing the number of 

burn points (tightening the design radius) no longer decreases the ∆vt but increases it. 

End Point Position Selection. 
 
 The decision to nominally place the end point on the outer constraint boundary 

was determined empirically by investigating many general case solutions, and 

experimentally by varying the end point for a specific circumnavigation maneuvers 

analytical design.  The analytical design algorithm is modified to change the position of 

the end point for the maneuver.  This is accomplished by varying the value of rt from the 

inner torus radius to the outer torus radius and computing the total impulse for each 
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design.  Figure 27 shows the impact on the total impulse with varying the radius to the 

end point for the circumnavigation maneuver defined by the parameters: Θy = 90º, Θz = 0º, 

γo = 45º with TOF = 0.1 and ρmax = 0.01 km.  The maximum value for ∆vt occurs on the 

inner constraint radius, and the minimum value occurs at the outer constraint radius. 
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Figure 27.  End Point Variation in the Analytical Design Method, ρmax = 0.01 km. 

 There are circumnavigations for which placing the endpoint on the outer 

constraint boundary does not represent the minimum analytical design choice.  Figure 28 

shows the results of varying the endpoint for the same circumnavigation, but with an 

increased maximum deviation radius: ρmax = 0.02 km.   
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Figure 28.  End Point Variation in the Analytical Design Method, ρmax = 0.02 km. 

This shows the optimal placement of the endpoint near the nominal radius; 

however the difference between placing the endpoint on its optimal position and the outer 

constraint boundary is not great.  Additionally, the large increase in the maximum 

deviation radius for this circumnavigation may not be realistic for operational constraints.  

To simplify the algorithm, the end point is assumed to lie on the outer constraint 

boundary for the rest of the results presented.  The optimal end point placement can be 

used if the maximum deviation radius becomes a significant fraction of the nominal 

radius, however for all examples in this thesis the end point has been placed on the outer 

constraint boundary. 
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Analytical Design Method Performance 

The designed algorithm for the initial conditions is input as the initial guess into 

the optimization routine.  This allows for significant savings compared to the EAET case, 

but also validates the use of the algorithm as a good approximation near a local 

minimum.   

Optimization Results with Design as Initial Guess. 

Figure 29 shows the optimization results using the design algorithm guess for  

r0 = 50 m, Θy = 60º, Θz = 30º, γo = 45º with TOF = 0.1 and ρmax=0.01 km.  Figure 30 

shows the deviation of both the design and the optimized solution. 
 

 
Figures 29. Design and Optimized Circumnavigation Paths.  r0 = 50 m, Θy = 60º,  

Θz = 30º, γo = 45º with TOF = 0.1 and ρmax = 0.01 km 
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Figures 30. Design and Optimized Circumnavigation Path Deviations.  r0 = 50 m, Θy = 

60º, Θz = 30º, γo = 45º with TOF = 0.1 and ρmax = 0.01 km 
 

The two paths are very close to each other, with the optimized path touching the 

inner constraint radius at most points.  The design actual path does not actually touch the 

constraint radius because the actual flight paths between burn points are curved as 

opposed to straight lines.  The ∆vt for the design path is 2.3928 m/s with the optimized 

∆vt equal to 2.2942 m/s which represent savings of 10.30% and 14.00% respectively.  

Savings realized by using the optimized state vector as opposed to the design state vector 

are only 0.0985 m/s, or 3% on EAET.  The computational requirements for the 

optimization may not justify this small increase. 

Variation of the Inner Constraint Radius (Maximum Deviation Radius). 
 

As seen in the Special Case results varying the maximum deviation radius has an 

impact on the placement of the burn points for the optimized solution.  For the analytic 

method the number of burn points increases as expected  (subsequently the ∆vt increases) 
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as the maximum deviation radius decreases.  The inverse relationship is true as well.  

Figures 31 and 32 show the circumnavigation paths and deviations respectively for the 

same circumnavigation shown in Figure 29, but with ρmax increased to 20 m.  The ∆vt for 

the design path is 1.84 m/s with the optimized ∆vt equal to 1.72 m/s which represent 

savings of 21.25% and 28.33% respectively over an EAET method using 4 burn points 

and a ∆vt = 2.40 m/s.   

 
Figure 31.  Design and Optimized Circumnavigation Paths—Larger ρmax.  
r0 = 50 m, Θy = 60º, Θz = 30º, γo = 45º with TOF = 0.1 and ρmax = 0.02 km 

 



 60 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Time (fraction of TOF)

ρ 
(k

m
)

Design Path
Optimized Path
Constraint Boundary

 
Figure 32.  Design and Optimized Circumnavigation Deviations—Larger ρmax. 

  r0 = 50 m, Θy = 60º, Θz = 30º, γo = 45º with TOF = 0.1 and ρmax = 0.02 km 
 

 The design radius for this case is farther from the inner constraint radius at 32.9 m 

(2.9 m away from the inner constraint radius).  The major increase in savings is a result 

of the total path length for the circumnavigation being considerably shorter (tighter radius) 

than the EAET method, even with reducing the number of burn points.  The amount of 

decrease in ∆vt for the EAET due to the decrease in the number of burn points (compared 

to the previous one) does not compensate for the better results found by the design and 

optimization.  Overall, comparing the actual values of ∆vt, the general observation is 

made: increasing the ρmax results in a decrease in ∆vt, consistent with all other cases. 
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Variation of the Nominal Radius. 
 
 Increasing the nominal radius shows the performance of the algorithm for another 

circumnavigation, and the percentage of savings over the EAET method stays relatively 

constant.  Figures 33 and 34 show the results of increasing the nominal radius to 100m 

while making keeping the percentage (of the nominal radius) of the maximum deviation 

radius constant at 20% (20 m for 100 m).  The orientation of the nominal path and TOF 

are the same as the circumnavigation shown in Figures 29 and 30 (r0 = 100 m, Θy = 60º, 

Θz = 30º, γo = 45º with TOF = 0.1 and ρmax = 0.02 km).  The ∆vt for the design path is 

4.78 m/s with the optimized ∆vt equal to 4.59 m/s which represent savings of 10.30% and 

13.90% respectively.    

 
Figures 33. Design and Optimized Circumnavigation Paths—Larger r0.   

r0 = 100 m, Θy = 60º, Θz = 30º, γo = 45º with TOF = 0.1 and ρmax = 0.02 km 
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Figures 34. Design and Optimized Circumnavigation Path Deviations— Larger r0.     

r0 = 100 m, Θy = 60º, Θz = 30º, γo = 45º with TOF = 0.1 and ρmax = 0.02 km 
 

 There are two effects of note from this example.  First, the percentage of savings 

from the EAET stays relatively constant.  Keeping the same ratio of inner constraint 

radius to the nominal radius allows for relatively constant savings, which implies for any 

given orientation the results can be scaled at a particular TOF.   

Second, the number of burn points stays relatively constant for both the EAET and 

the design/optimization.  As the nominal radius is increased for a constant TOF, the time 

to travel between subsequent burn points decreases with increasing distance.  Essentially, 

this indicates the paths between the burn points better approximate a line, and the 
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minimum number of points allowed with a given inner constraint radius stays nearly 

constant. 

Circumnavigation Requirements Comparison. 

 The results from a representative set of initial conditions are shown in Table 4.  

The analytic design outperforms the minimum burn EAET case, and the optimization 

results using the analytical design method as the initial guess always produces the 

minimum circumnavigation ∆vt found from any guess.  Another benefit to the analytical 

design as an initial guess is a very high probability of convergence to a minimum.  
 

Table 4.  Analytic Design Algorithm Performance 
 

Total Impulse (∆vt) 

EAET ∆ vt 
 

Analytical Design Algorithm 
∆vt 

 
(m/s) 

Optimization 
∆vt 

(m/s) 

 

Initial Conditions 
r0 = 50 m, 

a = 6778 km 

Min. 
Burn 

Pts. (b) 

∆vt 
(m/s) 

Design 
Burn 
Points 

(b) 

rd 

(m) 
% of 

EAET 
% of EAET 

2.39 2.29 Θy=60°, Θ z=30°, γo=45°, 
TOF = 0.1, ρ max=10 m 5 2.67 11 41.2 

10.3% 14.0% 

2.79 2.71 Θy=0°, Θz=0°, γo=0°, 
 TOF = 0.1, ρ max=10 m 5 3.02 11 41.2 

7.8% 10.5% 

2.37 2.24 

V
ar

ia
ti

on
 o

f N
om

in
al

 
P

at
h 

O
ri

en
ta

ti
on

 

Θy=90°, Θ z=0°, γo=45°, 
TOF = 0.1, ρ max=10 m 5 2.61 11 41.2 

10.8% 14.3% 

1.84 1.73 Θy=60°, Θ z=30°, γo=45°, 
TOF = 0.1, ρ max=20 m 4 2.39 13 32.9 

23.2% 27.8% 

2.54 2.44 

V
ar

ia
ti

on
 o

f 
ρ

m
ax

 Θy=60°, Θ z=30°, γo=45°, 
TOF = 0.1, ρ max=8 m 6 2.84 13 42.9 

10.9% 14.1% 

1.05 0.99 Θy=60°, Θ z=30°, γo=45°, 
TOF = 0.2, ρ max=10 m 5 1.18 10 41.5 

11.3% 16.6% 

5.14 4.97 

V
ar

ia
ti

on
 o

f 
T

O
F

 Θy=60°, Θ z=30°, γo=45°, 
TOF = 0.05, ρmax=10 m 5 5.67 13 40.8 

9.4% 12.3% 
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Table 4 also presents other indications of the cost function’s nature, specifically; 

there is a strong correlation between the savings and the inner constraint radius as well as 

the TOF.  As Figure 35 shows, the percent savings between the EAET method and the 

Analytical Design Method decreases with increasing TOF.  As the TOF increases the 

EAET becomes a better approximation. The local minimums produced using the design 

algorithm as the initial guess are the lowest, valid circumnavigations found of all the 

initial conditions investigated. 

The discontinuous steps in the EAET curve represent changes in the minimum 

number of burn points.  The EAET does not necessarily minimize the path length by 

having the intermediate flight path tangent to the inner constraint radius, which produces 

the major difference between the two curves.  The analytical method has the advantage of 

producing a relatively smooth line in Figure 35 which eliminates inefficiencies created by 

the discretized nature of the EAET method. 
 

 
Figure 35.  ∆vt versus rc with varying TOF.  

 r0 = 50 m, Θy=60°, Θz=30°, γo=45°, ρmax = 0.01 km. 
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Design Radius Versus Inner Constraint Radius (Maximum Deviation Radius). 
 
 The analytical design method determines a design radius based upon the 

dynamics and the inner constraint radius.  It is informative to investigate how the design 

radius varies as a function of the inner constraint radius for a particular circumnavigation 

which is presented in Figure 36.     
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Figure 36.  Design Radius Versus Inner Constraint Radius.  r0 = 50 m, Θy=60°, Θz=30°, 

γo=45°, TOF = 0.1 
 
The dashed straight line is where the design radius would be equal to the inner constraint 

radius, and the starred line represents the computed design radius for each inner 

constraint radius.  The design radii approach the inner constraint radii as the inner 

constraint radius shrinks with the greatest difference at the 30 m point.  The greatest 
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difference is approximately 3 m.  There does not appear to be a direct correlation between 

the differences in the design radii and the inner constraint radii and the total impulse 

shown in Figure 35.  The roughness of the design radius line is a function of the 

increment size of the individual design radii used in the algorithm; the smaller the 

increment size the smoother the line. 

Initial Conditions Considerations. 

 The analytical design method can be easily generalized to the problem where the 

initial position does not necessarily lie on the ‘nominal’ path.  This can be accomplished 

by replacingthe nominal radius with a ‘pseudo-nominal’ radius in the algorithm, and 

placing the inner constraint radius at the minimum allowable distance to the chief.  For 

this problem, the end point placement would need to be taken into account.  If the 

distance from the initial point to the inner constraint radius (i.e. maximum deviation 

radius) is large (greater than 0.2 r0), then the position of the end point should be added to 

the algorithm as shown above.   

In general, the initial velocity of the deputy with respect to the chief will not be 

necessarily zero.  The plane of the constraint torus may be chosen (if a free parameter) to 

better the deputy’s initial relative velocity vector.  The magnitude and direction of the 

initial velocity can have a significant affect on the ∆vt by directly adding or subtracting to 

the results presented.   
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VI.  Conclusions  
 

Two design approaches have been developed to allow a satellite to 

circumnavigate a chief satellite or Resident Space Object via impulsive thrusting.  The 

first method located burn points about a nominal path in equal angles and equal times.  

When considering the flight path constraints, there exists a specific minimum number of 

burn points for which the equal-angle/equal-time flight path will be feasible.  This 

minimum number of burn points yields the minimum total fuel expenditure for this 

method.  This method is useful due to its inherent simplicity, and scales to the continuous 

case as the number of burn points goes to infinity. 

The second circumnavigation analytic approach was to choose a design radius and 

locate the burns along a circle of that radius, with the trajectory between the burns 

intersecting a circle of minimum approach distance at a tangent point.  This method 

always yielded lower fuel expenditure than the equal-angle/equal-time (EAET) method, 

and increased the savings over the EAET method as the total circumnavigation time of 

flight decreased.  The analytical design method produced a relatively simple algorithm 

that could be used for on-board autonomous operations. 

The two described methods were employed as initial guesses for a numerical 

optimization routine to find a minimum-fuel solution.  In most cases, the local minimum 

was fairly close to the analytical design method in both trajectory and fuel expenditure.  

Thus, the analytical design approach generally always provides the best initial guess 

toward a minimum-fuel solution. 
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Appendix A.  Special Case Output Data with Optimization Check 
 
Special Case Data Output : 
 
Optimized Total Delta Vee:   2.48949127357e-003  
Initial Total Delta Vee:   2.60817455142e-003 
Inputs: 
 thetayd =   90 deg 
 thetayzd=   0 deg 
 gamma0d=  45 deg 
 b=     5 
 ro_m=     50 km 
 a=    6778 km 
 Tot_TOF=   0.100 
 r_dev =   0.0100 km 
 TolFun =   1.0e-009  
 TolCon =   1.0e-009  
 TolX =   1.0e-009  
 DiffMaxChange = 1.0e-001  
 DiffMinChange = 1.0e-009  
 
Gradient:   Eigenvalues of Hessian: 
0.00007461     0.00038337  
0.00029368     0.01170769  
0.00030405     0.06065438  
0.00035531     0.12869209  
-0.00006748     0.74177054  
-0.00017411     0.91848107  
-0.00018238     1.03272863  
-0.00007135     2.00804976  
 
Norm of Gradient:   0.00061946  
 
Initial Guess State Vector:  Optimized State Vector:  
              1.25664     1.43005  
              1.25664     1.15891  
              1.25664     1.14946  
              1.25664     1.14303  
              0.20000     0.25428  
              0.20000     0.19841  
              0.20000     0.18950  
              0.20000     0.18143  
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X   g(u)     Violation Mat         F(X')            F(X')-F(X)         Ck Sum 
 
1    +1.0e-009    0 0 0 0 0 0 0   2.4894913e-003   +7.4724515e-014   0 
 2    +1.0e-009    0 0 0 0 0 0 0   2.4894913e-003   +2.9334521e-013   0 
 3    +1.0e-009    0 0 0 0 0 0 0   2.4894913e-003   +3.0243429e-013   0 
 4    +1.0e-009    0 0 0 0 0 0 0   2.4894913e-003   +3.0654038e-013   0 
 5    +1.0e-009    0 0 0 0 0 0 0   2.4894913e-003   -7.9358395e-014   0 
 6    +1.0e-009    0 0 0 0 0 0 0   2.4894913e-003   -1.9296023e-013   0 
 7    +1.0e-009    0 0 0 0 0 0 0   2.4894913e-003   -1.9792024e-013   0 
 8    +1.0e-009    0 0 0 0 0 0 0   2.4894913e-003   -1.7930579e-013   0 
 1    -1.0e-009    0 0 0 0 0 0 0   2.4894913e-003   -7.4724515e-014   0 
 2    -1.0e-009    0 0 0 0 0 0 0   2.4894913e-003   -2.9334521e-013   0 
 3    -1.0e-009    0 0 0 0 0 0 0   2.4894913e-003   -3.0243473e-013   0 
 4    -1.0e-009    0 0 0 0 0 0 0   2.4894913e-003   -3.0654082e-013   0 
 5    -1.0e-009    0 0 0 0 0 0 0   2.4894913e-003   +7.9305052e-014   0 
 6    -1.0e-009    0 0 0 0 0 0 0   2.4894913e-003   +1.9295633e-013   0 
 7    -1.0e-009    0 0 0 0 0 0 0   2.4894913e-003   +1.9785952e-013   0 
 8    -1.0e-009    0 0 0 0 0 0 0   2.4894913e-003   +1.7924507e-013   0 
****************************************************** 
 1    +1.0e-008    0 0 0 0 0 0 0   2.4894913e-003   +7.4724732e-013   0 
 2    +1.0e-008    0 0 0 0 0 0 0   2.4894913e-003   +2.9334547e-012   0 
 3    +1.0e-008    0 0 0 0 0 0 0   2.4894913e-003   +3.0243473e-012   0 
 4    +1.0e-008    0 0 0 0 0 0 0   2.4894913e-003   +3.0654051e-012   0 
 5    +1.0e-008    0 0 0 0 0 0 0   2.4894913e-003   -7.9335540e-013   0 
 6    +1.0e-008    0 0 0 0 0 0 0   2.4894913e-003   -1.9296049e-012   0 
 7    +1.0e-008    0 0 0 0 0 0 0   2.4894913e-003   -1.9789764e-012   0 
 8    +1.0e-008    0 0 0 0 0 0 0   2.4894913e-003   -1.7926841e-012   0 
 1    -1.0e-008    0 0 0 0 0 0 0   2.4894913e-003   -7.4724471e-013   0 
 2    -1.0e-008    0 0 0 0 0 0 0   2.4894913e-003   -2.9334525e-012   0 
 3    -1.0e-008    0 0 0 0 0 0 0   2.4894913e-003   -3.0243455e-012   0 
 4    -1.0e-008    0 0 0 0 0 0 0   2.4894913e-003   -3.0654038e-012   0 
 5    -1.0e-008    0 0 0 0 0 0 0   2.4894913e-003   +7.9335019e-013   0 
 6    -1.0e-008    0 0 0 0 0 0 0   2.4894913e-003   +1.9296019e-012   0 
 7    -1.0e-008    0 0 0 0 0 0 0   2.4894913e-003   +1.9789465e-012   0 
 8    -1.0e-008    0 0 0 0 0 0 0   2.4894913e-003   +1.7926563e-012   0 
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X   g(u)     Violation Mat         F(X')            F(X')-F(X)         Ck Sum 
 1    +1.0e-007    0 0 0 0 0 0 1   2.4894913e-003   +7.4724597e-012   1 
 2    +1.0e-007    0 0 0 0 0 0 0   2.4894913e-003   +2.9334540e-011   0 
 3    +1.0e-007    0 0 0 0 0 0 0   2.4894913e-003   +3.0243468e-011   0 
 4    +1.0e-007    0 0 0 0 0 0 0   2.4894913e-003   +3.0654051e-011   0 
 5    +1.0e-007    0 0 0 0 0 0 0   2.4894913e-003   -7.9332938e-012   0 
 6    +1.0e-007    0 0 0 0 0 0 0   2.4894913e-003   -1.9295616e-011   0 
 7    +1.0e-007    0 0 0 0 0 0 0   2.4894913e-003   -1.9789163e-011   0 
 8    +1.0e-007    0 0 0 0 0 0 0   2.4894913e-003   -1.7926180e-011   0 
 1    -1.0e-007    0 0 0 0 0 0 0   2.4894913e-003   -7.4724571e-012   0 
 2    -1.0e-007    0 0 0 0 0 0 0   2.4894912e-003   -2.9334531e-011   0 
 3    -1.0e-007    0 0 0 0 0 0 0   2.4894912e-003   -3.0243460e-011   0 
 4    -1.0e-007    0 0 0 0 0 0 0   2.4894912e-003   -3.0654041e-011   0 
 5    -1.0e-007    0 0 0 0 0 0 0   2.4894913e-003   +7.9339729e-012   0 
 6    -1.0e-007    0 0 0 0 0 0 0   2.4894913e-003   +1.9296525e-011   0 
 7    -1.0e-007    0 0 0 0 0 0 0   2.4894913e-003   +1.9790109e-011   0 
 8    -1.0e-007    0 0 0 0 0 0 0   2.4894913e-003   +1.7927353e-011   0 
****************************************************** 
 1    +1.0e-006    0 0 0 0 0 0 1   2.4894913e-003   +7.4724661e-011   1 
 2    +1.0e-006    0 0 0 0 0 0 0   2.4894916e-003   +2.9334572e-010   0 
 3    +1.0e-006    0 0 0 0 0 0 0   2.4894916e-003   +3.0243504e-010   0 
 4    +1.0e-006    0 0 0 0 0 0 0   2.4894916e-003   +3.0654096e-010   0 
 5    +1.0e-006    0 0 0 0 0 0 1   2.4894912e-003   -7.9301980e-011   1 
 6    +1.0e-006    0 0 0 0 0 0 1   2.4894911e-003   -1.9291631e-010   1 
 7    +1.0e-006    0 0 0 0 0 0 1   2.4894911e-003   -1.9784854e-010   1 
 8    +1.0e-006    0 0 0 0 0 0 1   2.4894911e-003   -1.7920718e-010   1 
 1    -1.0e-006    0 0 0 0 0 0 1   2.4894912e-003   -7.4724503e-011   1 
 2    -1.0e-006    0 0 0 0 0 0 1   2.4894910e-003   -2.9334499e-010   1 
 3    -1.0e-006    0 0 0 0 0 0 1   2.4894910e-003   -3.0243424e-010   1 
 4    -1.0e-006    0 0 0 0 0 0 1   2.4894910e-003   -3.0653996e-010   1 
 5    -1.0e-006    0 0 0 0 0 0 1   2.4894914e-003   +7.9370827e-011   1 
 6    -1.0e-006    0 0 0 0 0 0 0   2.4894915e-003   +1.9300532e-010   0 
 7    -1.0e-006    0 0 0 0 0 0 0   2.4894915e-003   +1.9794419e-010   0 
 8    -1.0e-006    0 0 0 0 0 0 0   2.4894915e-003   +1.7932833e-010   0 
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X   g(u)     Violation Mat         F(X')            F(X')-F(X)         Ck Sum 
1    +1.0e-005    0 0 0 0 0 0 1   2.4894920e-003   +7.4725363e-010   1 
 2    +1.0e-005    0 0 0 0 0 0 0   2.4894942e-003   +2.9334902e-009   0 
 3    +1.0e-005    0 0 0 0 0 0 0   2.4894943e-003   +3.0243862e-009   0 
 4    +1.0e-005    0 0 0 0 0 0 0   2.4894943e-003   +3.0654547e-009   0 
 5    +1.0e-005    0 0 0 0 0 0 1   2.4894905e-003   -7.8992135e-010   1 
 6    +1.0e-005    0 0 0 0 0 0 1   2.4894893e-003   -1.9251596e-009   1 
 7    +1.0e-005    0 0 0 0 0 0 1   2.4894893e-003   -1.9741791e-009   1 
 8    +1.0e-005    0 0 0 0 0 0 1   2.4894895e-003   -1.7866183e-009   1 
 1    -1.0e-005    0 0 0 0 0 0 1   2.4894905e-003   -7.4723802e-010   1 
 2    -1.0e-005    0 0 0 0 0 0 1   2.4894883e-003   -2.9334169e-009   1 
 3    -1.0e-005    0 0 0 0 0 0 1   2.4894882e-003   -3.0243066e-009   1 
 4    -1.0e-005    0 0 0 0 0 0 1   2.4894882e-003   -3.0653544e-009   1 
 5    -1.0e-005    0 0 0 0 0 0 1   2.4894921e-003   +7.9680664e-010   1 
 6    -1.0e-005    0 0 0 0 0 0 0   2.4894932e-003   +1.9340565e-009   0 
 7    -1.0e-005    0 0 0 0 0 0 0   2.4894933e-003   +1.9837483e-009   0 
 8    -1.0e-005    0 0 0 0 0 0 0   2.4894931e-003   +1.7987368e-009   0 
****************************************************** 
 1    +1.0e-004    0 0 0 0 0 0 1   2.4894987e-003   +7.4732388e-009   1 
 2    +1.0e-004    0 0 0 0 0 0 0   2.4895206e-003   +2.9338204e-008   0 
 3    +1.0e-004    0 0 0 0 0 0 0   2.4895215e-003   +3.0247445e-008   0 
 4    +1.0e-004    0 0 0 0 0 0 0   2.4895219e-003   +3.0659060e-008   0 
 5    +1.0e-004    0 0 0 0 0 0 1   2.4894837e-003   -7.5893082e-009   1 
 6    +1.0e-004    0 0 0 0 0 0 1   2.4894724e-003   -1.8851248e-008   1 
 7    +1.0e-004    0 0 0 0 0 0 1   2.4894720e-003   -1.9311213e-008   1 
 8    +1.0e-004    0 0 0 0 0 0 1   2.4894740e-003   -1.7320955e-008   1 
 1    -1.0e-004    0 0 0 0 0 0 1   2.4894838e-003   -7.4716777e-009   1 
 2    -1.0e-004    0 0 0 0 0 0 1   2.4894619e-003   -2.9330866e-008   1 
 3    -1.0e-004    0 0 0 0 0 0 1   2.4894610e-003   -3.0239482e-008   1 
 4    -1.0e-004    0 0 0 0 0 0 1   2.4894606e-003   -3.0649031e-008   1 
 5    -1.0e-004    0 0 0 0 0 0 1   2.4894996e-003   +8.2778406e-009   1 
 6    -1.0e-004    0 0 0 0 0 0 0   2.4895110e-003   +1.9740938e-008   0 
 7    -1.0e-004    0 0 0 0 0 0 0   2.4895115e-003   +2.0268143e-008   0 
 8    -1.0e-004    0 0 0 0 0 0 0   2.4895098e-003   +1.8532805e-008   0 
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Appendix B. MATLAB * Code for Analytical Design Method† 

Main Program: Analytical Design and Optimization 

% Analytical Design Algorithm for Fast Satellite Circumnavigation 
% Main Program 
% Capt Stan Straight, USAF 
% Air Force Institute of Technology 
% 18 Feb 04 
 
clc;clear; 
 
global thetay thetaz gamma0 ro_m a Tot_TOF devr rd0 epsi0 
 
%%%%%%%%%%%%%%%%%% 
%       Inputs  
%%%%%%%%%%%%%%%%%% 
% Rotation of the path from the y-z plane about the y axis  
thetayd = 60; % degrees 
thetay = thetayd.*pi./180; % radians 
 
% Rotation of the path about the z-axis  
thetazd = 30; % degrees 
thetaz = thetazd*pi/180; % radians 
 
% Define the initial angle of the initial position from the y-axis  
% direction 
gamma0d = 45; % degrees 
gamma0 = gamma0d*pi/180; % radians 
 
% Input the radius of the reference orbit in kilometers 
a = 6778; % km 
 
% Input the time of flight for the complete circumnavigation as a fraction 
% of the reference orbit's period 
Tot_TOF = .1; 
 
% Define the nominal radius 
ro_m = 100; % m 
r0 = ro_m./1000; % km 
 
% Maximum Deviation Radius 
devr = 0.04; %km 
 
% Minimum Radius to search over (fraction of the devr) 
minrc = 1.001; 
 
% Establish the initial radius from the nominal path and the angle from the 

                                                 
* Version 6.5, Release 13.  See Reference 6. 
† Only core programs and sub-programs shown: main program and sub-programs call other sub-programs 
for formatting data for plotting not included 
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% minor axis  
rd0 = 0; 
epsi0 = 0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%       End Inputs 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Inner constraint radius 
rc = r0 - devr; 
maxrc = rc+devr; 
 
% Outside constraint radius 
rt = r0 + devr; 
 
% Calculate alpha angle for algorithm 
al = acos(rc./r0); 
 
% Establish the search region 
rd = minrc.*rc:.0001:maxrc; 
 
% Call the algorithm as a function firstorddes  
[states,tot_delvee,const,numbpts] = firstorddes(rt,rc,rd); 
 
% Check for the plot of the points where there is a change in the number of 
%  burn points between each different case 
combo = [rd' numbpts'];  
jun = 1; 
for s = 1:length(rd)-1 
    if combo(s,2) > combo(s+1,2) | combo(s,2) < combo(s+1,2); 
        ptbpt(jun,:) = combo(s,:);  
        jun = jun +1; 
    end 
end 
 
% Determine the minimum point, and the design radius producing the minimum 
% value 
[yuck,ind] = min(tot_delvee); 
rdyuck = rd(ind); 
 
% Add one to the number of burn points vector to determine the acctual 
% number of burn points within a given state 
bvec = numbpts + 1; 
 
% Find the plots for the min state 
smin = states(:,ind); 
for g = 1:length(smin)-3 
    if sum([smin(g) smin(g+1)]) > 0 
        xstmin(g) = smin(g); 
    end 
end 
 
% Place the burn points for the minimum design vector 
[bposi,rnom] = plCostfcnav1(xstmin); 
 
% Use the optimization program to evaluate a new minima if available 
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[xstop,fvalop] = genoptimization(xstmin); 
% Place the burn points for the optimized state vector 
[bposiop,rnomo] = plCostfcnav1(xstop);  
 
% Create the actual intermediate points for each state vector 
cvecmin = plotintptsav1(xstmin); 
cvecop = plotintptsav1(xstop);  
 
% Plot the total impulse as a function of the design radii 
figure(1) 
plot(rd,tot_delvee,'.-') 
%title(['Analytical Approach: Total Delta Vee vs Change in Design Radius, devr=',num2str(devr)]) 
xlabel('r_d (km)') 
ylabel('\Delta v_t (km/s)') 
hold on 
for h =1:length(ptbpt) 
plot([ptbpt(h,1) ptbpt(h,1)],[min(tot_delvee) max(tot_delvee)],'r:') 
end 
hold off 
 
% Plot the number of burn points 
figure(2) 
 plot(rd,bvec) 
 %title('Number of Burn Points Computed vs. Design Radius') 
xlabel('r_d (km)') 
 ylabel('Number of Burn Points (Includes the Initial Point)') 
  
 % Call a function to create the torus surface representing the maximum 
 % deviation constraint 
 [rdx,rdy,rdz] = torusmaker1(r0,devr,thetay,thetaz);  
  
figure(3) 
plot3(bposi(:,1),bposi(:,2),bposi(:,3),'ro',cvecmin(:,1),cvecmin(:,2),cvecmin(:,3),'r-',... 
    bposiop(:,1),bposiop(:,2),bposiop(:,3),'k+',cvecop(:,1),cvecop(:,2),cvecop(:,3),'k--',... 
    rnom(:,1),rnom(:,2),rnom(:,3),'-.') 
grid on 
% title(['Optimized Flight Path, Thetay=',num2str(thetayd),', Thetaz=',num2str(thetazd),... 
%     ', Gamma0',num2str(gamma0d),', b=',num2str(numbpts(ind)+1),', TOF=',num2str(Tot_TOF)]) 
legend('Design Burn Points','Design Path','Optimized Burn Points','Optimized Path','Nominal Path') 
xlabel('x (km)') 
ylabel('y (km)') 
zlabel('z (km)') 
axis square 
hold on 
mesh(rdx,rdy,rdz) 
hidden off 
shading flat 
colormap([0.9 0.9 0.9]) 
hold off 
axis equal 
 
% Create the plot showing the deviation from the nominal path for each the 
% design state and the optimized state vector 
[cmi,tvecmi] = planonlincont(xstmin); 
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[co,tveco] = planonlincont(xstop);  
 cmin = zeros(length(tvecmi)+1,1)';  
 tvecmin = zeros(length(tvecmi)+1,1)';  
 cmin(2:length(tvecmi)+1) = cmi; 
 tvecmin(2:length(tvecmi)+1)= tvecmi; 
  
 cop = zeros(length(tvecmi)+1,1)';  
 tvecop = zeros(length(tvecmi)+1,1)';  
 cop(2:length(tvecmi)+1) = co; 
 tvecop(2:length(tvecmi)+1)= tveco; 
 % Compute a line for visualizing the constraint 
dep = ones(length(tvecmi)+1,1)';  
devrplot = dep.*devr;  
 
figure(4) 
plot(tvecmin,cmin,'.-',tvecop,cop,'+-',tvecmin,devrplot,'--') 
% title(['Deviation of Actual Path','Thetay=',num2str(thetayd),', Thetaz=',num2str(thetazd),... 
%     ', Gamma0',num2str(gamma0d),', b=',num2str(numbpts(ind)+1),', TOF=',num2str(Tot_TOF)]) 
xlabel('Time (fraction of TOF)') 
ylabel('\ rho (km)') 
grid on 
axis([0 1 0 devr+devr.*.05]) 
legend('Design Path','Optimized Path','Constraint Boundary',4) 
 
    b0= (length(xstmin)+2)./4; 
     
    % Create a dummy variable to populate with the EAET method 
    xst0(1:2.*b0) = zeros(2.*b0,1)'; 
     
    % Equal Angle/Equal Time 
        gammai = 1./b0; 
        ti = (1./b0);            
    for i = 1:b0-1 
        xst0(2.*b0 + i) =gammai; 
        xst0(2.*b0 + i+(b0-1)) = ti; 
    end 
     
    % Compute the total impulse for the EAET 
    eqtot_delvee = Costfcnav1(xst0);  
     
disp(['Equal Burn/Equal Time Total De lta Vee: ',num2str(eqtot_delvee)]) 
disp(['Design Total Delta Vee:',num2str(yuck)]) 
disp(['        Found at an rd of:',num2str(rdyuck)]) 
disp(['Optimized Total Delta Vee:',num2str(fvalop)])     
    % Compute the percentage difference between the Design and Optimized 
    % Total Delta Vee 
    designper = ((eqtot_delvee - yuck)./eqtot_delvee).*100; 
    optimper = ((eqtot_delvee - fvalop)./eqtot_delvee).*100; 
disp('  ') 
disp(['Percentage Saved by Design:',num2str(designper),'%']) 
disp(['Percentage Saved by Optimization:',num2str(optimper),'%']) 
if const(ind) > 0 

disp('*******Designed State Exceeds Constraints*******') 
end 
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Subprogram: Analytical Design Function 

function [states,tot_delvee,const,numbpts] = firstorddes(rt,rc,rd) 
% This function is the analytical design method given the inner 
% contraint radius, rc, the last point radius rt, and the search region for 
% the design radius (rd).  The design radius must be larger than one point. 
%  The output is the states for each design radius, the total impulse for 
%  those states and the constraint matrix for those states.  If any number 
%  in the constraint matrix is greater than 0, then the state exceeds the 
%  constraints.  The format for calling this function is  
%  [states,tot_delvee,const] = firstorddes(rt,rc,rd) 
 
global thetay thetaz gamma0 ro_m a Tot_TOF devr rd0 epsi0 
 
r0 = ro_m./1000; % km 
maxrc = rc+devr; 
al = acos(rc./r0); 
sigma = 0; 
 
for k = 1:length(rd) 
    % First path length 
    p(1,k) = sqrt(r0^2-rc^2)+sqrt(rd(k)^2-rc^2); 
     pf(k) = sqrt(rt^2-rc^2)+sqrt(rd(k)^2-rc^2); 
     
    gamma(1,k) = asin((p(1,k).*rc)./(r0.*rd(k)));  
        gammaf(k) = asin((pf(k).*rc)./(rt.*rd(k)));  
     
    counter = 1; 
       
    while sigma(k) < (2.*pi-gammaf(k)) 
        gamma(counter+1,k) = 2.*acos(rc./rd(k)); 
        counter = counter + 1; 
        sigmat = sum(gamma,1);  
        sigma(k) = sigmat(k); 
    end 
     
    if sigma(k) > (2.*pi - gammaf(k)) 
        gamt(1:counter-1,k) = gamma(1:counter-1,k); 
        sigmaft = sum(gamt,1); 
        sigmaf(k) = sigmaft(k); 
        gamma(counter,k) = 2.*pi - sigmaf(k) - gammaf(k); 
    end     
   
    sigma(k+1) = 0; 
end 
 
% Normalize the gamms to 2 pi 
gamman = gamma./(2.*pi); 
 
% Set the time between the burn points to the same ratio with respect to 
% the total time 
timen = gamman; 
% Compute the normalized distance from the nominal 
rdn = abs(r0-rd)./devr; 
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% Set all the points except for the last one on the inside of the nominal 
% within the nominal's plane; place the last point on the outside of the 
% torus in the nominal's plane 
epsi(1:length(rd)-1) = 0.5; 
epsi(length(rd)) = 0; 
 
% Build each unique state vector 
gut = size(gamman); 
 
for h = 1:length(rd) 
    for q = 1:gut(1) 
        if gamman(q,h)>0 
            numbpts(h) = q; 
            bi = numbpts; 
        end 
    end 
end 
% Add one to the number of burn points vector to determine the acctual 
% number of burn points within a given state 
bvec = numbpts + 1; 
for u = 1:length(rd) 
    xstn(1:bi(u)) = rdn(u); 
    xstn(bi(u)+1) = abs(r0-rt)./devr; 
    xstn(bi(u)+2:2.*bi(u)+1) = 0.5; 
    if rt >= r0 
    xstn(2.*bi(u)+2) = 0; 
    else 
    xstn(2.*bi(u)+2)=0.5; 
    end 
    xstn(2.*bi(u)+3:3.*bi(u)+2) = gamman(1:numbpts(u),u); 
    xstn(3.*bi(u)+3:4.*bi(u)+2) = timen(1:numbpts(u),u);  
    if u == 1 
        states = zeros(length(xstn),length(rd));  
    end 
    xstn = xstn'; 
    states(1:length(xstn),u) = xstn; 
    % Compute the cost function value for the new state vector 
    tot_delvee(u) = Costfcnav1(xstn);  
        % Compute the constraint function for the state to determine if the 
    % constraints are violated 
    [dum,ceq] = anonlincon(xstn); 
    c(u,1:length(dum)) = dum;  
    const(u)=0; 
    constc(u) = 0; 
    for y = 1:length(c) 
        if c(u,y) > 0 
            const(u) = const(u)+1; 
            constc(u) = 1; 
        end 
    end 
    xstn = 0; 
    dum = []; 
end 
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Sub-Subprogram: Cost Function Evaluation – Analytical Design 
 
function tot_delvee = costfcnav1(xst) 
% This is the cost function to be used with fmincon.  It computes the total 
% delta vee required to perform a circumnavigation, global variables are used and  
% should be defined by the main program, additionally the state vector xst should be  
% of the format rd's, epsilon's, gamma's then time and of 4*b -2 length. 
 
global thetay thetaz gamma0 ro_m a Tot_TOF devr rd0 epsi0 
 
% Calculate the mean motion of the reference orbit in rad/s 
n = sqrt((3.98601*10^5)/a^3); 
 
% Compute the time of circumnavigation 
refperiod = 2*pi/n;  % seconds 
tot_toc = Tot_TOF*refperiod; % seconds 
 
b= (length(xst)+2)./4; 
bmax = b; 
% Path radius in kilometers 
r0 = ro_m/1000; % kilometers 
 
% Calculate the real values from the normalized states  
rds = xst(1:b).*devr; 
epsis = xst(b+1:2.*b).*2.*pi; 
gamms = xst(2.*b+1:3.*b-1).*2.*pi; 
tims = xst(3.*b:4.*b-2).*tot_toc; 
 
% Define the initial position vector of the initial burn point 
        rdx0 = rd0.*sin(epsi0).*cos(thetay).*cos(thetaz) + 
(r0+rd0.*cos(epsi0)).*sin(gamma0).*cos(thetaz).*sin(thetay)... 
            -(r0+rd0.*cos(epsi0)).*cos(gamma0).*sin(thetaz); 
        rdy0 = (r0+rd0.*cos(epsi0)).*cos(gamma0).*cos(thetaz)+rd0.*sin(epsi0).*cos(thetay).*sin(thetaz)... 
            +(r0+rd0.*cos(epsi0)).*sin(gamma0).*sin(thetay).*sin(thetaz); 
        rdz0 = (r0+rd0.*cos(epsi0)).*sin(gamma0).*cos(thetay)-rd0.*sin(epsi0).*sin(thetay); 
 
rint = [rdx0;rdy0;rdz0]';  
 
% Define the initial velocity vector of the initial burn point 
vint = [0 0 0]; 
 
% Establish the initial velocity of the interceptor at the initial point 
dvf(1,:) = vint; 
 
for s = 1:b 
        if s < b 
            rd = rds(s); 
            epsi = epsis(s);  
            toc = tims(s);  
            if s ==1 
            gamma_j = gamms(s)+gamma0; 
            else 
            gamma_j = gamms(s)+gamma_j; 
            end     
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        elseif s == b  
            rd = rds(s); 
            epsi = epsis(s);  
            gamma_j = (2.*pi - sum(gamms))+gamma_j; 
            toc = tot_toc - sum(tims); 
        end 
        %Position of the next burn point 
        rdx = rd.*sin(epsi).*cos(thetay).*cos(thetaz) + 
(r0+rd.*cos(epsi)).*sin(gamma_j).*cos(thetaz).*sin(thetay)... 
            -(r0+rd.*cos(epsi)).*cos(gamma_j).*sin(thetaz); 
        rdy = (r0+rd.*cos(epsi)).*cos(gamma_j).*cos(thetaz)+rd.*sin(epsi).*cos(thetay).*sin(thetaz)... 
            +(r0+rd.*cos(epsi)).*sin(gamma_j).*sin(thetay).*sin(thetaz); 
        rdz = (r0+rd.*cos(epsi)).*sin(gamma_j).*cos(thetay)-rd.*sin(epsi).*sin(thetay); 
 
        rfin = [rdx;rdy;rdz]'; 
        % Compute the velocity needed to go from the current point to the next point 
        % in the given time of flight  
        dvi(s,:) = hillsvel2(rint,rfin,toc,n);       
        if s < b 
 
          % Compute the actual velocity at the next point    
               dvf(s+1,:) = hillsvelf(rint,dvi(s,:),toc,n); 
        end         
        % Reset the position of the next burn point to the current burn 
        % point to propagate the next sequential burn point along the path 
        rint = rfin; 
         
end 
 
% Compute the change in velocity 
delvee_vec = dvf - dvi;                
 
if b == 1 
    delvee_mag_burn(b) = norm(delvee_vec(b,:));  
end 
 
for g = 1:b 
delvee_mag_burn(g) = norm(delvee_vec(g,:)); 
end 
 
tot_delvee = sum(delvee_mag_burn); 
 

Sub-Subprogram: Compute Impulse Between Points Using Hill’s Equations 
 
function vint = hillsvel2(rint,rfin,tof,n) 
% This program will take an initial and final position row vectors defined 
% in the LVLH frame, the time of flight between the points and output the 
% initial velocity required to achieve these parameters.  The output is in 
% a row vector format for the velocity components in the LVLH frame.  The 
% time of flight needs to be in seconds and the value of n has to be in 
% rad/s.  n is the mean motion of the reference orbit. 
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% Define the value of psi 
ang = n * tof;  
 
% Input the phi rr and phi rv matrices 
 
 phirr = [(4-3*cos(ang)),0,0;6*(sin(ang)-ang),1,0;0,0,cos(ang)]; 
 
 inphirv = [n*(3*ang-4*sin(ang))/(-8+8*cos(ang)+3*ang*sin(ang)),-2*n*(cos(ang)-1)/(-
8+8*cos(ang)+3*ang*sin(ang)),0; 
     2*n*(cos(ang)-1)/(-8+8*cos(ang)+3*ang*sin(ang)),n*sin(ang)/(8-8*cos(ang)-3*ang*sin(ang)),0; 
     0,0,n/sin(ang)]; 
 
% compute the required initial velocity 
vint = (inphirv*(rfin'-phirr*rint'))';  
%end 
 

Sub-Subprogram: Propogate Velocity from Previous Burn Point with Hill’s 
Equations 

 
function vfin = hillsvelf(rint,vint,tof,n) 
% This program will take an initial position  and initial velocity row vectors defined 
% in the LVLH frame, the time of flight between the points and output the 
% velocity at the end of the time of flight required to achieve these parameters. 
% The output is in 
% a row vector format for the velocity components in the LVLH frame.  The 
% time of flight needs to be in seconds and the value of n has to be in 
% rad/s.  n is the mean motion of the reference orbit. 
 
% Define the value of psi 
ang = n * tof;  
 
% Input the phi vr and phi vv matrices 
 
 phivr = [3*n*sin(ang),0,0;6*n*(cos(ang)-1),0,0;0,0,-n*sin(ang)]; 
  
 phivv = [cos(ang),2*sin(ang),0;-2*sin(ang),-3+4*cos(ang),0;0,0,cos(ang)];  
 % compute the required final velocity 
vfin = (phivr*rint'+phivv*vint')';  

Subprogram: Perform Optimization Using fmincon 

% Compute the optimized path given the global constraints and initial guess 
% state vector 
% Capt Stan Straight 
 
function [xst,fval] = genoptimization(xst0) 
 
global thetay thetaz gamma0 ro_m a Tot_TOF devr rd0 epsi0 
% Establish the options parameters for the optimization function 
dmaxchange = 1e -1; 
dminchange = 1e-9; 
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TolFun = 2e -9; 
TolCon = 1e-9; 
TolX = 1e-9; 
 
% Calculate the mean motion of the reference orbit in rad/s 
n = sqrt((3.98601*10^5)./a^3); 
% Compute the time of circumnavigation 
refperiod = 2*pi./n;  % seconds 
tot_toc = Tot_TOF*refperiod; % seconds 
% Compute the number of burn points  
b= (length(xst0)+2)./4; 
bmax = b; 
 
% Path radius in kilometers 
r0 = ro_m/1000; % kilometers 
% Establish the A matrix contraint and the b matrix constraint 
A = zeros(4.*b-2,4.*b-2); 
A(1,2.*b+1:3.*b-1) = ones(1,b-1); 
A(2,3.*b:4.*b-2) = ones(1,b-1); 
% Establish the b matrix contraint 
bineq = zeros(4.*b-2,1); 
bineq(1) = 1; 
bineq(2) = 1; 
 
% Define the lower and upper bounds of the functions 
for k = 1:4.*b-2 
    ub(k) = 1;     
end 
ub=ub';  
for p = 1:4.*b-2 
    lb(p) = 0; 
end 
lb(3.*b:4.*b-2) = 1e-7; 
lb = lb'; 
options = 
optimset('LargeScale','off','MaxFunEvals',20000,'MaxIter',500,'TolFun',TolFun,'TolCon',TolCon,... 
    'TolX',TolX,'Display','iter','DiffMaxChange',dmaxchange,'DiffMinChange',dminchange); 
 
% Use fmincon function to find the state vector that produces the minimum total deltavee 
[xst,fval,exitflag,output,lambda,grad,hessian] = 
fmincon(@Costfcngv1,xst0,A,bineq,[],[],lb,ub,@gnonlincon,options);  
 

Sub-Subprogram: Cost Function Evaluation for Optimization. 
 
function tot_delvee = costfcngv1(xst) 
% This is the cost function to be used with fmincon.  It computes the total 
% delta vee required to perform a circumnavigation, global variables are used and  
% should be defined by the main program, additionally the state vector xst should be  
% of the format rd's, epsilon's, gamma's then time and of 4*b -2 length. 
 
global thetay thetaz gamma0 ro_m a Tot_TOF devr rd0 epsi0 
 
b= (length(xst)+2)./4; 



 82 

bmax = b; 
 
% Calculate the mean motion of the reference orbit in rad/s 
n = sqrt((3.98601*10^5)/a^3); 
 
% Compute the time of circumnavigation 
refperiod = 2*pi/n;  % seconds 
tot_toc = Tot_TOF*refperiod; % seconds 
 
% Path radius in kilometers 
r0 = ro_m/1000; % kilometers 
 
% Calculate the real values from the normalized states  
rds = xst(1:b).*devr; 
epsis = xst(b+1:2.*b).*2.*pi; 
gamms = xst(2.*b+1:3.*b-1).*2.*pi; 
tims = xst(3.*b:4.*b-2).*tot_toc; 
 
% Define the initial position vector of the initial burn point 
        rdx0 = rd0.*sin(epsi0).*cos(thetay).*cos(thetaz) + 
(r0+rd0.*cos(epsi0)).*sin(gamma0).*cos(thetaz).*sin(thetay)... 
            -(r0+rd0.*cos(epsi0)).*cos(gamma0).*sin(thetaz); 
        rdy0 = (r0+rd0.*cos(epsi0)).*cos(gamma0).*cos(thetaz)+rd0.*sin(epsi0).*cos(thetay).*sin(thetaz)... 
            +(r0+rd0.*cos(epsi0)).*sin(gamma0).*sin(thetay).*sin(thetaz); 
        rdz0 = (r0+rd0.*cos(epsi0)).*sin(gamma0).*cos(thetay)-rd0.*sin(epsi0).*sin(thetay); 
 
rint = [rdx0;rdy0;rdz0]';  
 
% Define the initial velocity vector of the initial burn point 
vint = [0 0 0]; 
 
% Establish the initial velocity of the interceptor at the initial point 
dvf(1,:) = vint; 
 
for s = 1:b 
        if s < b 
           rd = rds(s); 
            epsi = epsis(s);  
            toc = tims(s);  
           if s ==1 
            gamma_j = gamms(s)+gamma0; 
            else 
            gamma_j = gamms(s)+gamma_j; 
            end     
        elseif s == b  
            rd = rds(s); 
            epsi = epsis(s);  
            gamma_j = (2.*pi - sum(gamms))+gamma_j;  
            toc = tot_toc - sum(tims); 
        end 
        %Position of the next burn point 
        rdx = rd.*sin(epsi).*cos(thetay).*cos(thetaz) + 
(r0+rd.*cos(epsi)).*sin(gamma_j).*cos(thetaz).*sin(thetay)... 
            -(r0+rd.*cos(epsi)).*cos(gamma_j).*sin(thetaz); 
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        rdy = (r0+rd.*cos(epsi)).*cos(gamma_j).*cos(thetaz)+rd.*sin(epsi).*cos(thetay).*sin(thetaz)... 
            +(r0+rd.*cos(epsi)).*sin(gamma_j).*sin(thetay).*sin(thetaz); 
        rdz = (r0+rd.*cos(epsi)).*sin(gamma_j).*cos(thetay)-rd.*sin(epsi).*sin(thetay); 
 
        rfin = [rdx;rdy;rdz]'; 
         
        % Compute the velocity needed to go from the current point to the next point 
        % in the given time of flight  
        dvi(s,:) = hillsvel2(rint,rfin,toc,n);       
        if s < b 
          % Compute the actual velocity at the next point    
               dvf(s+1,:) = hillsvelf(rint,dvi(s,:),toc,n); 
        end         
        % Reset the position of the next burn point to the current burn 
        % point to propagate the next sequential burn point along the path 
        rint = rfin; 
end 
 
% Compute the change in velocity 
delvee_vec = dvf - dvi;                
 
if b == 1 
    delvee_mag_burn(b) = norm(delvee_vec(b,:));  
end 
 
for g = 1:b 
delvee_mag_burn(g) = norm(delvee_vec(g,:));  
end 
 
tot_delvee = sum(delvee_mag_burn); 
 

Sub-Subprogram:  Determine Flight Path Constraints 
 
function [c,ceq] = gnonlincon(xst) 
 
global thetay thetaz gamma0 ro_m a Tot_TOF devr rd0 epsi0 
 
% Define the number of intermediate points 
z = 20; 
% Calculate the mean motion of the reference orbit in rad/s 
n = sqrt((3.98601*10^5)/a^3); 
% Compute the time of circumnavigation 
refperiod = 2*pi/n;  % seconds 
tot_toc = Tot_TOF*refperiod; % seconds 
 
% Path radius in kilometers 
r0 = ro_m/1000; % kilometers 
b= (length(xst)+2)./4; 
bmax = b; 
 
% Calculate the real values from the normalized states  
rds = xst(1:b).*devr; 
epsis = xst(b+1:2.*b).*2.*pi; 
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gamms = xst(2.*b+1:3.*b-1).*2.*pi; 
tims = xst(3.*b:4.*b-2).*tot_toc; 
 
% Define the initial position vector of the initial burn point 
        rdx0 = rd0.*sin(epsi0).*cos(thetay).*cos(thetaz) + 
(r0+rd0.*cos(epsi0)).*sin(gamma0).*cos(thetaz).*sin(thetay)... 
            -(r0+rd0.*cos(epsi0)).*cos(gamma0).*sin(thetaz); 
        rdy0 = (r0+rd0.*cos(epsi0)).*cos(gamma0).*cos(thetaz)+rd0.*sin(epsi0).*cos(thetay).*sin(thetaz)... 
            +(r0+rd0.*cos(epsi0)).*sin(gamma0).*sin(thetay).*sin(thetaz); 
        rdz0 = (r0+rd0.*cos(epsi0)).*sin(gamma0).*cos(thetay)-rd0.*sin(epsi0).*sin(thetay); 
 
rint = [rdx0;rdy0;rdz0]';  
 
% Define the initial velocity vector of the initial burn point 
vint = [0 0 0]; 
 
% Establish the initial velocity of the interceptor at the initial point 
dvf(1,:) = vint; 
 
for s = 1:b 
        if s < b 
            rd = rds(s); 
            epsi = epsis(s);  
            toc = tims(s);  
            if s ==1 
            gamma_j = gamms(s)+gamma0; 
            else 
            gamma_j = gamms(s)+gamma_j; 
            end     
        elseif s == b  
            rd = rds(s); 
            epsi = epsis(s);  
            gamma_j = (2.*pi - sum(gamms))+gamma_j;  
            toc = tot_toc - sum(tims); 
        end 
         
        %Position of the next burn point 
        rdx = rd.*sin(epsi).*cos(thetay).*cos(thetaz) + 
(r0+rd.*cos(epsi)).*sin(gamma_j).*cos(thetaz).*sin(thetay)... 
            -(r0+rd.*cos(epsi)).*cos(gamma_j).*sin(thetaz); 
        rdy = (r0+rd.*cos(epsi)).*cos(gamma_j).*cos(thetaz)+rd.*sin(epsi).*cos(thetay).*sin(thetaz)... 
            +(r0+rd.*cos(epsi)).*sin(gamma_j).*sin(thetay).*sin(thetaz); 
        rdz = (r0+rd.*cos(epsi)).*sin(gamma_j).*cos(thetay)-rd.*sin(epsi).*sin(thetay); 
 
        rfin = [rdx;rdy;rdz]'; 
        % Compute the velocity needed to go from the current point to the next point 
        % in the given time of flight  
        dvi(s,:) = hillsvel2(rint,rfin,toc,n);       
 
        % Compute the vector of intermediate points within the  
        cirfin = inthillsoptnonlin(rint,dvi(s,:),toc,n,z); 
        q(s) = (z+1+(s-2).*z)';  
        cvec(q(s):q(s)+z-1,:) = cirfin; 
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        % Reset the position of the next burn point to the current burn 
        % point to propagate the next sequential burn point along the path 
        rint = rfin; 
         
end 
 
% Create a rotation matrix from the LVLH frame to the circumnav frame given 
% the values of gamma0, thetay, and thetaz 
rotxtop = [cos(thetay).*cos(thetaz),cos(thetay).*sin(thetaz),-1.*sin(thetay);... 
        cos(thetaz).*sin(gamma0).*sin(thetay)-cos(gamma0).*sin(thetaz),... 
        cos(gamma0).*cos(thetaz)+sin(thetay).*sin(thetaz).*sin(gamma0),cos(thetay).*sin(gamma0);... 
        cos(gamma0).*cos(thetaz).*sin(thetay)+sin(gamma0).*sin(thetaz),... 
        -1.*(cos(thetaz).*sin(gamma0))+cos(gamma0).*sin(thetay).*sin(thetaz),... 
        cos(gamma0).*cos(thetay)];  
 
pathvec = zeros(length(cvec),3); 
 
% Create the c matrix by determining the distance of the intermediate 
% position to the position of the nominal path.   
for m = 1:length(cvec) 
     % Extract each intermediate position 
     cvecp = cvec(m,:)';  
      % Rotate each vector into the pqw, then take the projection onto the 
     % pq frame 
     cvecprot(m,:) = (rotxtop*cvecp)';  
     cvecproj(m,:) = cvecprot(m,2:3); 
     pathvec(m,2:3) = r0.*(cvecproj(m,:)./norm(cvecproj(m,:)));  
end 
 
cmat = cvecprot-pathvec; 
  
 for w = 1:length(cvec) 
     c(w) = norm(cmat(w,:))-devr; 
 end 
 
% By setting this quantity to zero it eliminates the nonlinear equality constraint 
% requirement 
ceq = 0;  
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